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Abstract—We present a method for accelerating server applications using a hybrid CPU+FPGA architecture and demonstrate
its advantages by accelerating Memcached, a distributed key-value system. The accelerator, implemented on the FPGA fabric,
processes request packets directly from the network, avoiding the CPU in most cases. The accelerator is created by profiling
the application to determine the most commonly executed trace of basic blocks which are then extracted. Traces are executed
speculatively within the FPGA. If the control flow exits the trace prematurely, the side effects of the computation are rolled
back and the request packet is passed to the CPU. When compared to the best reported software numbers, the Memcached
accelerator is 9.15x more energy efficient for common case requests.
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1 INTRODUCTION

THe performance of processors is now limited by their
power consumption and thermal profile rather than

the number of transistors [7], [9]. The demand for energy
efficient computing has led to the rapid adoption of ac-
celerators, from mobile SoCs with dedicated hardware for
audio/video [25] to server processors with XML/Crypto
accelerators [8].

While hardwired specialized accelerators are orders of
magnitude more power efficient than CPUs [11], they are in-
flexible. To reduce the possibility the accelerator is rendered
useless due to a bug or changing requirements, flexibility is
often introduced, such as by adding support for parameters
and/or loadable instructions or by implementing the accel-
erator in a field programmable gate array (FPGA) fabric. In
either case, some of the gains of specialization are lost.

We propose a method to implement “in-line accelerators”
on FPGA fabrics to accelerate server applications. An in-line
accelerator sits between the network interface card (NIC)
and the CPU and intercepts incoming packets going from
the NIC to the CPU. In its general form, an in-line accel-
erator can (i) process the packets completely without CPU
involvement, (ii) process the packets partially, leaving the
rest of the computation for the CPU, or (iii) pass-through the
packets to the CPU without processing them. For the context
of this paper, we assume an architecture that supports only
(i) and (iii), and not (ii). Thus, a server application is sliced
into (i) a simple fast path that is executed by the in-line
accelerator and (ii) a complex slow path that is executed by
the CPU.

We evaluate our technique on Memcached. Full-system
simulations of both the client and server systems show
that a single in-line accelerator achieves 160% of the per-
formance of a 2-way SMT Xeon core, while consuming 17%
of its power. The synthesized accelerator on a medium-sized
FPGA consumes only 6% of the FPGA resources. The accel-
erator handles more than 96% of requests on real workloads.
We estimate that a CPU with the in-line accelerator is at least
2.3 times more energy efficient than a pure CPU solution.
To the best of our knowledge, this is the first method to
generate highly efficient in-line accelerators on FPGAs from
application code at a reasonable programming effort.

2 BACKGROUND AND MOTIVATION

Routers are often split into a data plane (fast path) and
control plane (slow path). The fast path which generally
includes network processors, traffic managers, and switch
fabrics accelerates the processing of common packets and
leaves the processing of uncommon packets (control pack-
ets) to general purpose processors.

Many network processors are multi-core ASIPs (Appli-
cation Specific Instruction Processors) with specialization
at different levels, including specialized instruction sup-
plies, customized datapaths, and highly tuned intercon-
nects, memory systems, and IO interfaces. They are much
higher in throughput and energy efficiency comparing to
CPUs for a wide range of networking applications, from
high-end routers to edge routers and firewalls.

There have been many attempts to manually split appli-
cations into fast path and slow path components [4], [23].
On the other hand, other research work [20], [24] manually
implemented server applications on FPGA resources. Our
focus is to create a general technique to create FPGA-
based in-line accelerators. The main requirement for this
generalization is a method to automatically create a fast
path and to implement the fast path on a highly efficient
micro-architecture. Emerging FPGA+CPU platforms ( [6],
[15], [26]) make this technique attractive.

A natural approach to automatically generate the fast
path is to detect hot traces, consisting of multiple basic
blocks and then slice the application to extract those hot
traces. This approach has been used to accelerate desktop
applications in architectures with tightly coupled cores and
accelerators with a shared register file [10]. However, in-
line accelerators can further improve the performance by
implementing entire hot traces in the accelerator inside
the NIC. Doing so enables the accelerator to process most
packets without CPU involvement. In addition, the CPU
cores require no special modifications.

We used Valgrind [22] to profile Memcached servicing
one million get requests. Figure 1 shows (i) the distribu-
tion of dynamic instructions across static ones and (ii) the
average number of dynamic instances of each instruction
per Memcached request. For most of the static instructions
the number of dynamic instances per request is close to
zero. These numbers lead us to determine the percentage
of requests that can be serviced in a hot trace. We found
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Fig. 1. Memcached dynamic/static instruction patterns. Each
static instruction might get executed multiple times and cre-
ates multiple dynamic instructions.

that 99% of get requests can be handled using a single hot
trace consisting of 1330 static instructions. This pattern is
the principle motivation to create an accelerator by covering
the hot instruction traces using efficient hardware and leave
the processing of the remaining requests which jumps out
of the hot traces to the CPU.

3 IN-LINE ACCELERATORS

In a conventional server architecture, the NIC’s main func-
tionality is to copy the incoming and outgoing packets
to/from the memory system. In a conventional server ap-
plication, the CPU expects packets to be available in the
memory after which it will (i) parse the request packets and
extract the relevant fields that form the arguments for the
request, (ii) process the request by performing computation
and potentially modifying global data structures, and finally
(iii) create response packet(s) if required. If the application
lives in the user space, additional overhead is imposed to
copy the packet data across various buffers/privilege-levels
including NIC FIFO, kernel network stack, application level
buffers. While zero-copy and user-space networking [13],
[21] can be used to minimize the user/kernel distinction
at the cost of blurring the protection/privilege separation,
such approaches still maintain a strong distinction between
the NIC buffer and the processor memory.

An in-line accelerator architecture (Figure 2) redraws how
computation is done by combining the NIC and the in-
line accelerator which (i) receives the incoming request
packets, (ii) processes the request packets by accessing
and modifying global application data-structures through
a coherent port without involving the CPU, and finally
(iii) sends the response packets if required. The in-line
accelerator processes packets speculatively, assuming the
packet is a common case the accelerator can handle. If the
accelerator determines it cannot handle the packet, it ”bails
out” from the fast path by rolling back what the accelerator
did speculatively, and passes the request packet to the CPU
cores via the conventional NIC interface.

3.1 Accelerator Micro-Architecture
In previous work, we developed an architecture and a
compiler to synthesize an FPGA-based Layer 3 packet
processor [16]. We use the same micro-architecture for in-
line acceleration. The micro-architecture consists of multiple
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Fig. 2. Proposed In-line accelerator architecture. Shaded cir-
cles represent hot control flow blocks that are used to service
most request packets, while unshaded circles represent the
remaining control blocks

multi-threaded engines. The independent input packets are
distributed among different engines for processing.

Each engine is a multi-threaded finite state machine
with an application specific datapath. Several instructions
are fused at compile-time to form a single finite state. In
each state, engines can perform chained arithmetic/logic
operations, predicated operations, and access to off-engine
resources. Each state, however, accesses the off-engine re-
sources, including packet memory, or any shared data be-
tween engines, no more than once. Although the access to
off-engine resources might have variable delay, the engine
infrastructure (i) guarantees the termination of operations
of a single state in a lock-step manner and (ii) switches
to another execution thread, processing another packet,
whenever access to off-engine resources incur long latency.

The focus of this paper is to couple such an FPGA-
based accelerator with a CPU to handle more complex
protocols and applications. Using a shared memory, data
structures can be shared between the fast path running on
the accelerator and the slow path running on the CPU. A
kernel driver allows a user application to allocate structures
from a shared pool of physical memory, which is accessible
from the accelerator. The driver also informs the accelerator
of this mapping, which is stored in an address translation
table on the accelerator. The accelerator uses this table to
translate virtual addresses when manipulating the pointers.
In addition, the accelerator contains a hardware lock engine
that is also used by CPU threads to guarantee mutual
exclusion.

3.2 Generating Accelerators

There are five steps to generate fast path in-line accelerators:
(i) profiling the application to detect the hot basic blocks, (ii)
slicing the application into fast path and slow path based
on the result of profiling, (iii) writing the bail out code, (iv)
refactoring the code into synthesizable processing steps [16],
and (v) synthesizing the fast path code into hardware.

The automation of the above process is out of the scope
of this paper. However, it is worth to mention that the steps
(i), (ii), and (v) are fully automated in our system. We are
currently working on automating step (iv) using high-level
synthesis techniques. Automating step (iii) is future work.
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However, server applications usually isolate updates as-
sociated with a client request until the entire processing of
the request is completed. In such cases, the bail out code
to roll back the side effects of the isolated computation is
simple. Memcached get operation, for example, isolates the
requested object from potential concurrent writers, making
it straightforward to write the bail out code.

In addition, mechanisms similar to hardware transac-
tional memory can be leveraged to roll back automatically.
Unlike conventional transactional memory programs where
rollbacks are triggered by conflicting memory accesses, in-
line accelerator rollbacks would be self-triggered to bail out
of the fast path.

4 ACCELERATING MEMCACHED

Memcached [19] is an open source key-value system for
in-memory objects which is often used as an application
level cache for conventional data repository systems [18].
Distributed Memcached clients use a consistent hashing
scheme to find the home server of an object of interest.
The server caches frequently requested objects in a hash
table and uses its own hash function to find the object.
Memcached has a number of commands for manipulating
the objects (e.g. get, set, delete, etc.) with a nearly 30-to-1
ratio of get to other types of requests in real workloads [1].

Recently, researchers in [5] implemented a subset of Mem-
cached commands on an FPGA. Comparing to CPU-based
solutions, they showed a significant improvement of energy
efficiency. Only two main Memcached commands — get and
set — were implemented on top of the UDP protocol in
order to fit the design in the target FPGA.

Memcached consists of 14 major commands. Due to the
requirement for a reliable communication channel, all com-
mands except get should be implemented on top of TCP
protocol. Such compromise re-emphasizes the fact that for
some complex applications, it is difficult for an FPGA-only
solution to be complete.

4.1 Memcached In-line accelerator

Profiling Memcached using a mixed get/set workload and
slicing the source code results in a fast path for common
get requests and leaves the handling of remaining requests
(a small portion of gets and all other commands i.e. sets,
deletes, etc.) to the CPU. The code that processes the get
request, including request parsing, item hash calculation,
item look up, LRU update, and response assembly, are all
in the fast path. When a cached object has an expired time
stamp, the request is handed to the slow path which kicks
off relatively complex slab management. We add the bail out
code, less than 30 lines in the original Memcached, to the
fast path code in order to safely abort a request and to han-
dover a request to the cold path software threads. Table 1
specifies the details on the Memcached fast path breakdown.
The breakdown does not include the hot instructions from
dynamic libraries.

4.2 Evaluation

The proposed architecture is evaluated using the gem5 [3]
simulator, modeling an Alpha DEC Tsunami system. A
two-node system is configured with mcblaster (a standard
Memcached load generator) running on the client and the

TABLE 1
The breakdown of the fast path hot trace in Memcached in
terms of LOCs (Lines Of Code) and hot static instructions
Function Caller function LOCs Hot

LOCs
Hot
instrs

drive machine - 320 82 261
try read cmd drive machine 129 33 83
add msg hdr try read cmd 36 23 41
process get cmd try read cmd 168 37 126
tokenize cmd try read cmd 42 36 138
item update process get cmd 8 5 24
item get process get cmd 9 5 26
item lock item update/item get 3 3 36
item unlock item update/item get 3 3 15
do item get item get 49 14 46
do item update item update 13 4 8
hash item update/item get 122 13 180
assoc find do item get 24 6 37
item link q do item update 21 10 20
item unlink q do item update 16 10 20
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Fig. 3. Throughput of accelerated Memcached with single
engine accelerator

Memcached daemon running on the server. The client and
the server are connected using a direct simulated Ethernet
link.

On the server system, the Alpha core acts as the slow
path core. The baseline NIC model contains a state machine
that copies incoming packets into the system memory and
outgoing packets from the system memory, both through the
DMA port. The NIC state machine is modified such that
upon receiving a new packet, the fast path state machine
processes the packet. If the fast path is capable of handling
the request, the steps are executed as part of the NIC
state machine. Otherwise, NIC proceeds with its normal
functionality, which is to copy the packet to the system
memory. The modified NIC is simulated to run at 100MHz.

Memcached is populated with half a million objects and
then warmed up for 5 seconds of target execution time in
atomic mode. After the warm up phase, simulation mode is
changed to timing for measurements and run for 2 seconds
of target execution time. Figure 3 demonstrates Memcached
throughput using a single-engine FPGA-based in-line accel-
erator. We vary the fraction of set traffic that is randomly
inserted into the workload. As expected, performance de-
grades with the number of set operations. However, as we
move to increasing object sizes, the impact of the set slow
path serialization is minimized as more time is spent outside
of the critical section to service each request.

We synthesize the generated in-line accelerator to a Xilinx
Virtex-5 TX240T FPGA part, as a measure of area and power
consumption for the FPGA fabric portion of CPU+FPGA
architecture. The accelerator consumes 9563 (6%) of the
FPGA’s LUTs and 5808 (1%) of the FPGA’s registers. Based
on the performance measurement of our accelerated system,
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TABLE 2
Estimation of accelerated Memcached power efficiency using hybrid FPGA+CPU architecture.
General-purpose
dual-thread cores

Accelerator dual-
thread engines

Cores power
(watts)

Uncore
power (watts)

Accelerator
power (watts)

Performance
(requests/sec)

Power efficiency (re-
quests/sec/watt)

CPU 8 0 96 44 0 < 3150K < 22.5K
CPU+FPGA 1 4 12 44 8 3200K 51.61K

a single threaded accelerator engine is capable of 583K
gets/sec while consuming less than 2 watts of power for
64 bytes objects. The targeted FPGA can accommodate 12
dual-thread accelerator engines at a very reasonable 72%
occupancy. Assuming there are no other limitations in the
system, that single, medium-sized FPGA can deliver almost
14M requests/sec.

We use the recently reported numbers of 350K gets/sec
for a Xeon core as our baseline [14]. McPat [17] is used to
estimate the breakdown of power consumption of the CPU
used in [14]. Xilinix’s xpower tool was used to estimate the
FPGA’s power consumption. When comparing only core
power versus only FPGA power, our accelerator is 9.15
times more power efficient than the Xeon core solution.

We also estimate the energy efficiency of the whole
CPU+FPGA accelerated solution and compare it with CPU-
only solution. The power efficiency of an eight core Xeon
processor with configuration reported in [14] is 22.5K re-
quests/sec/watt for get-only workload. Assuming that the
same chip is equipped with an FPGA fabric that can ac-
commodate an accelerator with four dual-thread engines,
the estimated chip power efficiency will be 51.61K re-
quests/sec/watt. Table 2 shows the power, throughput, and
energy efficiency for (i) the base-line Memcached server
and (ii) the in-line accelerated Memcached server. We re-
ported the get-only performance as a ceiling for the non-
accelerated mixed-load performance. The CPU+FPGA per-
formance, however, is based on a mixed workload with 30
gets to 1 set ratio. Our proposed solution also outperforms
other recent many-core [2] and GPU-based [12] solutions.

5 CONCLUSIONS AND FUTURE WORK

The notion of slicing a networking application into the fast
path and the slow path has been used in many commu-
nication and networking systems. This paper proposes to
apply such techniques to server applications amenable to
speculatively executing a hot path by slicing the application
and generating the fast path hardware accelerator. In addi-
tion to the Memcached application, our preliminary results
from slicing a user space TCP protocol stack, as well as
a light-weight web server confirms the existence of fast
paths in such applications. The heart of the acceleration
technique is a speculative execution model that enables
the in-line accelerator to perform computation on behalf
of conventional cores, while still being able to fall back to
software for the complex slow path.

The in-line accelerator architecture also offers significant
benefits to latency sensitive applications by stripping vari-
ous protection/privilege and artificial boundaries imposed
by existing interfaces, and replacing them with the fast
path accelerators. Since some applications [21] are highly
sensitive to latency, this approach offers benefits beyond
performance and energy improvements. We plan to apply
our FPGA-based in-line acceleration technique to latency

sensitive applications such as financial applications. Explor-
ing the trade-offs between FPGA resources and modern
network processors as the substrate for in-line acceleration
is another interesting future work.
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