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1 Proving the Fundamental Theorem of Statistical Learning

In this section, we prove the following:

Theorem 1.1 (Fundamental Theorem of Statistical Learning). The hypothesis class H is learnable if and

only if the VC-dimension of H, denoted d, is less than 1. If H is learnable, then the sample complexity is

given by m(", �) ⇠ d
" log

1

"� .

We refer to the Boolean mapping problem (i.e., learn some concept C : X ! {0, 1}) throughout the proof.
Recall the following definitions from previous lectures:

Definition 1.2 (VC-dimension). Define a hypothesis class H as a class of functions from a domain X to
{0, 1} and C = {c

1

, . . . , cm} ⇢ X . We say that the restriction of H to C, HC , is the set of functions from
C to {0, 1} we can derive from H. In other words,

HC = {(h(c
1

), . . . , h(cm)) : h 2 H}

or the set of vectors if we evaluate each of h 2 H on each element in C. If HC is the set of all functions from
C to {0, 1}, we say that H shatters C. In a previous lecture, we showed that this equivalent to |HC | = 2

|C|

(i.e., have a hypothesis for all possible configurations of C, where each ci 2 {0, 1}.

The VC-dimension of a hypothesis class H is the largest set C ⇢ X that can be shattered by H. If H can
shatter any size C, we say that the VC-dimension of H is infinity.

Definition 1.3 (Growth function ⌧H(m)). Define a function ⌧H(m) : N ! N for hypothesis class H as
follows:

⌧H(m) = max

C⇢X :|C|=m
|HC |

The growth function ⌧H(m) counts the number of different mappings C ! {0, 1} we can generate if we
restrict H to C if |C| = m.

Notice that if VC-DIMENSION(H) = d, then for all m less than d, we have ⌧H(m) = 2

m because H shatters
all C ⇢ X of size less than or equal to d. Sauer’s lemma, which we proved in the previous lecture, shows
that if m is greater than d, ⌧H(m) = O(m

d
).

1.1 Overall strategy

1. We already proved one direction of Theorem 1.1 via the No-Free-Lunch theorem: if the VC-dimension
of our hypothesis class H is infinite, then H is not learnable. In other words, if H is learnable, then
VC-DIMENSION(H) is finite.

2. To show that a hypothesis class H with finite VC-dimension is learnable, we first proved Sauer’s
Lemma. Then, we use the two-sample trick (because we cannot take infinitely-sized samples) to show
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that the error on one sample cannot be substantially different from the error on the other, rather than
rely on generalization arguments. We will make use of the following two events:

(a) Let A be the event that given a sample S ⇠ Dm, there exists some h 2 H such that the error on
the sample errS(h) is 0 and the generalization error err(h) is greater than some " > 0. In other
words:

Pr[A]

�

= Pr[9h 2 H s.t. errS(h) = 0 ^ err(h) > " | S ⇠ Dm
]

We will prove that Pr[A]  ⌧H(m)e

�m"
2 .

(b) Let B be the event that given two samples, S, S0 ⇠ Dm, there exists some h 2 H such that the
error on the first sample, S is 0, and the error on the second sample S

0 is "/2 for some " > 0. In
other words:

Pr[B]

�

= Pr
h
9h 2 H s.t. errS(h) = 0 ^ errS0

(h) >

"

2

| S, S0 ⇠ Dm
i

Claim 1.4. Pr[A]  2Pr[B].

Proof: By the law of total probability, we can write

Pr[B] = Pr[B|A]Pr[A] +Pr[B|¬A]Pr[¬A]

� Pr[B|A]Pr[A]

To prove the claim, it is sufficient to show Pr[B|A] � 1/2. Let S0
= {x

1

, . . . , xm} ⇠ Dm. Using the
hypothesis h 2 H defined for event A, we know that err(h) > " and errS(h) = 0 by definition. Then,
with

zi
�

=

⇢
1 loss(h, xi) = 1

0 o/w

and

Y

�

=

1

m

mX

i=1

zi = errS0
(h)

EY = E
"
1

m

mX

i=1

zi

#
= E[errS0

(h)] by definition of sample error

= err(h) > "

we see that 1 � Pr[B|A]  Pr[|Y � EY | > "
2

] because in order for |Y � EY | > "
2

, Y must deviate from
its mean, the generalization error, by more than "/2. Using the Chernoff bound, we see that

Pr
h
|Y � EY | > "

2

i
 2e

�m "
2 n 1

2

for any m we might choose (note that m ⇠ O(1/")), thus completing the proof of Claim 1.4. ⇤
Continuing our proof that Pr[A]  ⌧H(m)e

�m"
2 , we now seek to show Pr[B]  ⌧H(2m)e

�m"/2. We
employ the following symmetry argument that states that the probability of two samples S and S

0 being so
different that some hypothesis performs much better on one versus the other is small.

Construct two new sets T and T

0 by randomly partitioning S [S

0 into equal sets (note, this proof still works
if S \ S

0 6= ;, but need to use multisets; in practice, however, S and S

0 are nearly always disjoint because
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the domain is very large). Now, define a distribution T over choices of T and T

0 and BT as the event B, but
with T and T

0 instead of S and S

0:

Pr[BT ]
�

= Pr
h
9h 2 H s.t. errT (h) = 0 ^ errT 0

(h) >

"

2

| T, T 0 ⇠ Dm
i

We claim that PrS,S0
[B] = E

S,S0


Pr
T,T 0[BT |S, S0

]

�
. We take this detour because it is much easier to analyze

Pr
T,T 0[BT |S, S0

] (i.e., what is the probability that one set has all errors and the other has none).

Pr
T,T 0[BT |S, S0

] = Pr
T,T 0

h
9h 2 H s.t. errT (h) = 0 ^ errT 0

(h) >

"

2

| S, S0 ⇠ Dm
i

 |HS[S0 |max

h
Pr
T,T 0

h
errT (h) = 0 ^ errT 0

(h) >

"

2

i
by union bound

 ⌧H(2m)max

h
Pr
T,T 0

h
errT (h) = 0 ^ errT 0

(h) >

"

2

i

If we let k be the number of errors that h makes on S [ S

0 and k <

"m
2

, then there simply aren’t enough
errors to go around! In this case,

Pr
T,T 0[errT (h) = 0 ^ errT 0

(h) > "/2|S, S0
] = 0

If k � "m
2

, then this probability is bounded above by 2

�k because all errors must land in T

0 so that errT (h) =
0 (probability of k balls landing in the first m of 2m bins).

Collecting these results gives us

Pr[A]  2Pr[B]  2E[⌧H(2m)2

�k
], k � "m

2

From this last expression, we have 2⌧H(2m)e

�"m/2, which we set to be less than � for m =

log ⌧H(2m)

" log

1

� .
If we use the fact that log ⌧H(m) ⇠ d logm (as given in Sauer’s Lemma), then we have

m = 10

d log ⌧H(2m)

"

log

1

�

= ⌦

✓
d

"

log

d

"�

◆

A less naive approach can remove the d from within the log. This final step completes the proof of Theo-
rem 1.1. ⇤

2 Methods for bounding generalization error

So far, we have learned about two ways to bound generalization error. Today, we will learn about a
third.
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1. VC-dimension: the topic of discussion for the last two lectures. This the more general of the two
approaches we have seen so far.

2. Online2Batch: this approach is less general because it requires a convex structure for the problem,
but typically much more efficient.

3. Rademacher complexity: we will introduce this method today. Note that the computation of Rademacher
complexity is NP-hard for some hypothesis classes.

Definition 2.1 (Rademacher variables). Let � be a vector whose elements are chosen independently and
uniformly from {�1,+1}. That is, with probability 1/2 a given element is either �1 or 1.

Definition 2.2 (Empirical Rademacher complexity). Given a sample S = {x
1

, . . . , xm} chosen from Dm,
define the empirical Rademacher complexity ˆRS(H) as

ˆRS(H) = E
�

"
sup

h2H
1

m

mX

i=1

�iloss(h(xi))

#

Definition 2.3 (Rademacher complexity). For some m � 1, let the Rademacher complexity of H be the
expectation of the empirical Rademacher over all samples S of size m drawn from some distribution D.

Rm(H) = E
S⇠Dm

h
ˆRS(H)

i

To give some intuition, we consider the value of ˆRS(H) when H shatters S. Because we have h 2 H that
can generate any mapping of S to {�1,+1}m, select the one that maximizes the sum (i.e., �1 when �i is
�1, 1 when �i is 1). This way, regardless of what we select for �, we have 1 inside the expectation. This
measure captures the dimensionality of a hypothesis class very well because in a way, it is proportional to the
VC-dimension. We can show that Rm(H) is sort of bounded by the VC-dimension or ⌧m(H)/m (it could
be much smaller since the majority of the probability mass might not be over the shattered set).

Theorem 2.4. With probability at least 1� �, we have for all m and for all h 2 H,

err(h)  errS(h) + 2Rm(H) + 3

r
log(1/�)

m

This relation holds for agnostic learning as well since we do not assume realizability.

Proof: First, define a function �(S) = suph2H{err(h)� errS(h)}. If S and S

0 differ on only one sample,
xi 2 S and x

0
i 2 S

0, then

|�(S)� �(S

0
)| = | sup

h2H
{err(h)� errS(h)}� sup

h2H
{err(h)� errS0

(h)}| by definition

 | sup
h2H

{errS0
(h)� errS(h)}| sub-additivity of supremum

=

����sup
h2H

⇢
loss(h(x

0
i))� loss(h(xi))

m

����� only one sample different

=

1

m

By McDiarmid’s inequality, for any � > 0, with probability at least 1��, we get the following bounds:

|�(S)� E[�(S)] <

s
log

1

�

2m
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Therefore, to prove the theorem, we need only show that E[�(S)]  2Rm(H).

E[�(S)] = E
S
[sup

h2H
{err(h)� errS(h)}] by definition

= E
S


sup

h2H

⇢
E
S0 [errS

0
(h)� errS(h)]

��
expectation of i.i.d. sample error

 E
S,S0


sup

h2H
{errS0

(h)� errS(h)}
�

Jensen’s and convexity of supremum

= E
S,S0

"
sup

h2H

(
1

m

mX

i=1

⇥
loss(h, x

0
i)� loss(h, xi)

⇤
)#

by definition

= E
S,S0,�

"
sup

h2H

(
1

m

mX

i=1

�i
⇥
loss(h, x

0
i)� loss(h, xi)

⇤
)#

� doesn’t change E

 E
S0,�

"
sup

h2H

(
1

m

mX

i=1

�i
⇥
loss(h, x

0
i)
⇤
)#

� E
S,�

"
sup

h2H

(
1

m

mX

i=1

�i [loss(h, xi)]

)#
sub-additivity of supremum

= 2 E
S,�

"
sup

h2H

(
1

m

mX

i=1

�i [loss(h, xi)]

)#
�i and ��i distributed same way

= 2Rm(H) ⇤

Using the Massart’s Lemma, we have

Rm(H) 
r

2 log ⌧H(m)

m

Plugging this into Theorem 2.4, we get the desired bound. However, this is a much stronger claim be-
cause Rademacher complexity is a claim about averages whereas VC-dimension is a claim about worst
cases.
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