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1 Regularization

1.1 RFTL

In the last lecture we discussed RFTL, an algorithm that arose naturally in the online learning community.
There is clear intuition to motivate it too—we may obtain more stable solutions across iterations of the online
learning algorithm by adding a regularization function.

To recap, the RFTL update is:

xt+1 := arg min
x∈K

{
η

t∑
i=1

∇i · x+R(x)

}
and the regret bound is:

Regret(RFTL) ≤ 1

η
[R(x1)−R(x∗)] + 2η

T∑
t=1

‖∇t‖∗∇2R(zt)
2 = O(

√
T )

1.2 Mirrored Descent

Given R, ∇R : Rd → Rd is a vector field, the updates for the Mirrored Descent algorithm are:

∇R(yt+1) = ∇R(xt)− η∇t

xt+1 = ΠBR
K (yt+1) = arg min

x∈K
BR(x, yt+1)

Unlike RFTL, the intuition behind Mirrored Descent (MD) seems less clear, but one can show under
fairly general conditions that

xMD
t = xRFTL

t with the same regularization function R

Also, note that if R is the squared euclidean norm ‖ · ‖2, then MD is the gradient descent algorithm. If
R is negative entropy,

∑
i xi log xi, then MD is the multiplicative weights algorithm.

If we also optimize the parameter, η, we get the same regret bound:

Regret(MD) = Regret(RFTL) ≤ 2

√√√√2DR

T∑
t=1

‖∇t‖∗∇2R(zt)
2

1.3 Motivating adaptive regularization

This leads us to the question: what is the best R to choose to minimize regret? Clearly, it is more important
to optimize the term

∑T
t=1 ‖∇t‖∗∇2R(zt)

2 than the term DR, since the former is a sum that increases with T .
We saw in SGD that xt = 1

T

∑
t xt and that

E[f(xt)] ≤ min
x∗

f(x∗) +
regretT

T
where

regretT
T

≈ 1√
T

1



which is state-of-the-art.
If we apply matrix-norm regularization, i.e. R(x) = 1

2x
TAx, in RFTL, then the average regret term will

be

√
DR

∑
t ‖∇t‖∗

A−1
2

T . Thus it is reasonable for us to try to optimize regret over the choice of matrix A.

Here we sketch the idea for a simplified example. Suppose ∇t ∈


±1
±1
0
...
0

 ⊆ Rd. We introduce an

important definition for the set of matrices that we want to restrict ourselves to consider.

Definition 1.1. The spectohedron is the set of matrices

Sn := {X : X � 0, T r(X) ≤ 1, X ∈ Rn×m}

What is the best A ∈ Sn minimizing

√∑
t ‖∇t‖∗

A−1
2

T in this case? Since ∇t is only non-zero in its first 2
coordinates, it makes sense to have non-negative weights only in the top left 2× 2 submatrix of A.

When restricted only to the set Sn, we can in fact learn the bestA for regularization and get approximately
the same asymptotic performance as gradient descent.

For the rest of this lecture, we will not concern ourselves with the question of whether a matrix is
invertible, since we can perturb a singular matrix with δI where δ is vanishing, or just take the pseudoinverse.

2 AdaGrad

We introduce the AdaGrad algorithm:

• Initialize S0 = G0 = δI, x1 ∈ K

• For t = 1 to T , do:

1. Predict xt, suffer loss ft(xt)

2. Update:
St = St−1 +∇t∇T

t , Gt =
√
St

yt+1 = xt −G−1t ∇t

xt+1 = ΠGt
K (yt+1)

Projection step ‘optional’ because in reality we never step outside of K

A note on computational efficiency: another version of AdaGrad deals with the time consuming matrix
square root and inversion steps by defining Ŝt = diag(St), Gt =

√
Ŝt, so everything can be accomplished in

linear time. The regret bound for this version is asymptotically the same as the usual AdaGrad (only slightly
worse theoretical guarantees), and is popular in real world applications. (Note: ‖ · ‖∗A

2 = ‖ · ‖A−1
2).

We state and prove the regret bound for the usual AdaGrad as follows:

Theorem 2.1. Regret(AG)T = O

(√
minA∈Sn

∑T
t=1 ‖∇t‖∗A

2

)
Proof. We use the following fact: Let B � 0. Then

arg min
A∈Sn

A−1 ◦B =
B1/2

Tr(B1/2)
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where for symmetric matrices M,N , M ◦N := Tr(MN).
This fact leads to the following observation. Notice that there is a closed form expression for the ‘best’

A−1 norm:

arg min
A∈Sn

T∑
t=1

‖∇t‖∗A
2 = arg min

A∈Sn
A−1 ◦ ST

=
S
1/2
T

Tr(S
1/2
T )

=
GT

Tr(GT )

Thus, min
√∑T

t=1 ‖∇t‖∗A
2 =

√(
GT

Tr(GT )

)−1
◦GT

2 = Tr(GT )

It now suffices to prove:
Regret(AG)T = O(Tr(GT ))

Define D = maxu∈K ‖u− x1‖2.

‖xt+1 − x∗‖2Gt
≤ ‖yt+1 − x∗‖2Gt

(because of projection)

= ‖xt −G−1t ∇t − x∗‖2Gt

= ‖xt − x∗‖2Gt
− 2∇T

t (xt − x∗) +∇T
t G
−1
t ∇t

ft(xt)− ft(x∗) ≤ ∇t(xt − x∗)
≤ ‖xt − x∗‖2Gt

− ‖xt+1 − x∗‖2Gt
+∇T

t G
−1
t ∇t

Summing over t = 1 to T, 2×Regret(AG) ≤
T∑
t=1

‖xt − x∗‖2Gt
− ‖xt+1 − x∗‖2Gt

+∇T
t G
−1
t ∇t

=
T∑
t=1

(xt − x∗)T (Gt −Gt−1)(xt − x∗) +
T∑
t=1

‖∇t‖2G−1
t

+O(1)

Looking at the first term,

T∑
t=1

(xt − x∗)T (Gt −Gt−1)(xt − x∗) =
T∑
t=1

Tr
(
(Gt −Gt−1)(xt − x∗)(xt − x∗)T

)
≤

T∑
t=1

Tr (Gt −Gt−1) ‖(xt − x∗)(xt − x∗)T ‖2 by Hölder’s inequality

≤ D2
T∑
t=1

Tr(Gt)− Tr(Gt−1)

≤ D2Tr(GT )

Looking at the second term, we can prove by induction that

T∑
t=1

‖∇t‖2G−1
t
≤ 2

T∑
t=1

‖∇t‖2G−1
T

= 2Tr(GT )
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Check that the result holds for t = 1. Now, assume it holds for t = T , check the induction hypothesis
for t = T + 1:

T+1∑
t=1

∇T
t G
−1
t ∇t ≤ 2Tr(GT ) +∇T

T+1G
−1
T+1∇T+1

≤ 2Tr((G2
T+1 −∇T+1∇T

T+1)
1/2) + Tr(G−1T+1∇T+1∇T+1)

≤ 2Tr(GT )

where the last inequality is due to the following matrix inequality:

2Tr((A−B)1/2) + Tr(A−1/2B) ≤ 2Tr(A1/2)

Together, this proves that Regret(AG)T ≤ O(1) · Tr(GT )
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