
Theoretical Machine Learning - COS 511

Homework Assignment 1

Due Date: 22 Feb 2016, till 22:00

(1) Consulting other students from this course is allowed. In this case - clearly

state whom you consulted with for each problem separately.

(2) Searching the internet or literature for solutions, other than the course lec-

ture notes, is NOT allowed.

Ex. 1:

Let X = R2 be the domain and Y = {0, 1} be the label set of a learning problem. Let

H = {hr , r ∈ R+} be a set of hypothesis corresponding to all concentric circles on the

plane that classify as

hr(x) =


1 ‖x‖2 ≤ r

0 o/w

Prove that under the realizability assumptionH is PAC-learnable with sample complex-

ity

mH (ε, δ) ≤
 log 1

δ

ε



Ex. 2: [agnostic means noise-tolerance]

LetA be an agnostic learning algorithm for learning problem L = (X,Y = {0, 1},D,H),

and concept f : X 7→ Y which is realized by H . Consider the concept f̂ which is ob-

tained by replacing the label associated with each domain entry x ∈ X randomly with
1



2

probability ε0 every time x is sampled independently. That is:

f̂ (x) =



1 w.p. ε0
2

0 w.p. ε0
2

f (x) o/w

Prove that A can ε-approximate the concept f̂ : that is, show that A can produce a

hypothesis hA that has error

errD(hA) ≤
1
2
ε0 + ε

with probability at least 1 − δ for every ε, δ with sample complexity polynomial in
1
ε
, log 1

δ
, log |H|.

Ex. 3: [Proving Chernoff’s bound]

In this exercise we’ll prove Chernoff’s inequality:

Let x1, x2...xk be independent random variables, each receiving the values {−1, 1} w.p 1
2 .

Define: X =
∑k

i=1 xi, then for any real number t > 0:

P[X ≥ t] ≤ e
−t2
2k

• For the random variable X above, show that for every λ ≥ 0,

Pr[X ≥ t] = Pr[eλX ≥ eλt] ≤ e−λt ·

k∏
i=1

E[eλxi] = e−λt · (
eλ

2
+

e−λ

2
)k

• Prove that for all λ > 0, ( eλ
2 + e−λ

2 ) ≤ e
λ2
2 (hint: think of Taylor’s theorem)

• Show how to conclude with the statement: P[X ≥ t] ≤ e
−t2
2k

Ex. 4:

For this problem, you need not be concerned about algorithmic efficiency.

• Suppose that the domain X is finite. Prove or disprove the following statement:

If a concept f is PAC learnable byH , then f ∈ H . (To prove the statement, you

of course need to give a proof showing that it is always true. To disprove the



3

statement, you can simply provide a counterexample showing that it is not true

in general.)

• Repeat the first part without the assumption that X is finite. In other words,

for the case that the domain X is arbitary and not necessarily finite, prove or

disprove that if f is PAC learnable byH , then f ∈ H.

Ex. 5:

Extend the no free lunch theorem to state the following:

There exists a domain X such that for all ε > 0, for any integer m ∈ N, learning algo-

rithm A which given a sample S produces hypothesis A(S ), there exists a distribution D

and a concept f : X 7→ {0, 1} such that

• errD( f ) = 0

• ES∼Dm[err(A(S ))] ≥ 1
2 − ε


