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In this lecture we consider a fundamental property of learning theory: it is amenable to boosting.
Roughly speaking, boosting refers to the process of taking a set of rough “rules of thumb” and combin-
ing them into a more accurate predictor.

Consider for example the problem of Optical Character Recognition (OCR) in its simplest form: given a
set of bitmap images depicting hand-written postal-code digits, classify those that contain the digit “1” from
those of “0”.

Figure 1: Distinguishing zero vs. one from a single pixle.

Seemingly, discerning the two digits seems a formidable task taking into account the different styles of
handwriting, errors, etc. However, an inaccurate rule of thumb is rather easy to produce: in the bottom-
left area of the picture we’d expect many more dark bits for “1”s than if the image depicts a “0”. This is,
of course, a rather inaccurate statement. It does not consider the alignment of the digit, thickness of the
handwriting etc. Nevertheless, as a rule of thumb - we’d expect better-than-random performance, or some
correlation with the ground truth.

The inaccuracy of the simplistic single-bit predictor is compensated by its simplicity. It is a rather simple
task to code up a classifier based upon this rule which is very efficient indeed. The natural and fundamental
question which arises now is: can several of these rules of thumb be combined into a single, accurate and
efficient classifier?

In the rest of this note we shall formalize this question in the statistical learning theory framework. We
then proceed to use the technology developed earlier in the course, namely regret minimization algorithms
for OCO, to answer this question on the affirmative.
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1 The problem of Boosting

We focus on statistical learnability rather than agnostic learnability. More formally, we assume the so called
“realizability assumption”, which states that for a learning problem over hypothesis class H there exists
some h∗ ∈ H such that error(h∗) = 0.

Definition 1.1 (Weak learnability). The concept class H : X 7→ Y is said to be γ-weakly-learnable if the
following holds. There exists an algorithm A that accepts ST = {(x, y)} and returns an hypothesis in
A(ST ) ∈ H that satisfies:
for any δ > 0 there exists T = T (H, δ, γ) large enough such that for any distribution D over pairs (x, y)
and T samples from this distribution, it holds that with probability 1− δ,

error(A(St)) ≤
1

2
− γ

This is an apparent weakening of the definition of statistical learnability that we have described earlier:
the error is not required to approach zero. The standard case of statistical learning in the context of boosting
is called “strong learnability”. An algorithm that achieves weak learning is referred to as a weak learner,
and respectively we can refer to a strong learner as an algorithm that attains statistical learning for a certain
concept class.

The central question of boosting can now be formalized: are weak learning and strong learning equiva-
lent? In other words, is there a (hopefully efficient) procedure that has access to a weak oracle for a concept
class, and returns a strong learner for the class?

Miraculously, the answer is affirmative, and gives rise to one of the most effective paradigms in machine
learning, as we see next.

2 Boosting by OCO

In this section we describe a reduction from regret minimization to boosting.

2.1 Learning a finite sample

Our derivation focuses on simplicity rather than generality. As such, we make the following assumptions:

1. We restrict ourselves to the classical setting of binary classification. Boosting to real-valued losses is
also possible, but outside our scope. Thus, we assume the loss function to be the zero-one loss, that
is:

`(ŷ, y) =


0 y = ŷ

1 0/w

2. We assume that the concept class is realizable, i.e. there exists an h ∈ H such that error(h) = 0.
There are results on boosting in the agnostic learning setting, but these are beyond our scope.

3. We assume that the distribution D is represented by a small finite sample S = {(xi, yi) , i ∈ [m]} of
size m = m(ε) which depends on the final desired accuracy ε. The definition of learnability implies
that indeed such a sample size m depends on the required approximation guarantee, probability of
success and other properties of the hypothesis class itself such as the VC dimension. Thus, there is no
loss of generality with this assumption.
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4. For a sample S ∼ D, let errorS(h) be the empirical error of an hypothesis h ∈ H on the sample, i.e.

error
S

(h)
def
= E(x,y)∼S [h(x) 6= y].

We assume that any hypothesis h ∈ H that attains zero error on the sample Sm for m = m(ε) is
guaranteed at most ε generalization error.

This assumption is well justified in statistical learning theory, and its central theorems address exactly
this scenario: taking a large enough sample and finding a hypothesis which is consistent with the
sample (zero error on it), implies ε generalization error. However, the conditions in which the above
holds are beyond our scope.

With these assumptions and definitions we are ready to prove our main result: a reduction from weak
learning to strong learning using an OCO low-regret algorithm. Essentially, our task would be to find a
hypothesis which attains zero error on a given sample.

2.2 Algorithm and analysis

Pseudocode for the boosting algorithm is given in Algorithm 1. The reduction above accepts as input a
γ-weak learner and treats it as a black box, returning a function which we’ll prove is a strong learner.

The reduction also accepts as input an online convex optimization algorithm denotedAOCO. The under-
lying decision set for the OCO algorithm is the m-dimensional simplex, where m is the sample size. Thus,
its decisions are distributions over examples. The cost functions are linear, and assign a value of zero or
one, depending on whether the current hypothesis errs on a particular example. Hence, the cost at a certain
iteration is the expected error of the current hypothesis (chosen by the weak learner) over the distribution
chosen by the low-regret algorithm.

Algorithm 1 Reduction from Boosting to OCO
Input: H, ε, δ, OCO algorithm AOCO, γ-weak learning algorithm AWL, sample Sm ∼ D.
Set T such that 1

T RegretT (AOCO) ≤ γ
2

Set disribution p1 = 1
m1 ∈ ∆m to be the uniform distribution.

for t = 1, 2 . . . T do
Find hypothesis ht ← AWL(pt,

δ
T )

Define the loss function ft(p) = r>t p, where the vector rt ∈ Rm is defined as

rt(i) =


1 ht(xi) = yi

0 o/w

Update pt+1 ← AOCO(f1, ..., ft)
end for
return h̄(x) = sign(

∑T
t=1 ht(x))

It is important to note that the final hypothesis h̄which the algorithm outputs does not necessarily belong
toH - the initial hypothesis class we started off with.

Theorem 2.1. Algorithm 1 returns a hypothesis h̄ such that with probability at least 1− δ,

error
S

(h̄) = 0
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Proof. Given h ∈ H, we denote its empirical error on the sample S, weighted by the distribution p ∈ δm,
by:

error
S,p

(h) =

m∑
i=1

p(i) · 1h(xi)6=yi

Notice that by definition of rt we have r>t pt = 1− errorS,pt(ht). Since ht is the output of a γ-weak-learner
on the distribution pt, we have for all t ∈ [T ],

Pr[r>t pt ≤
1

2
+ γ] = Pr[1− error

S,pt

(ht) ≤
1

2
+ γ]

= Pr[error
S,pt

(ht) ≥
1

2
− γ]

≤ δ

2T

This applies for each t separately, and by the union bound we have

Pr[
1

T

T∑
t=1

r>t pt ≤
1

2
+ γ] ≤ δ

Denote by p∗ the uniform distribution over the samples from S that h̄ misclassifies. Suppose there are
N such samples, then:

T∑
t=1

r>t p
∗ =

T∑
t=1

1

N

N∑
j=1

1ht(xj)=yj

=
1

N

N∑
j=1

T∑
t=1

1ht(xj)=yj

≤ 1

N

N∑
j=1

T

2
h̄(xj) 6= yj

=
T

2

Combining the pervious two observations, we have with probability at least 1− δ that

1

2
+ γ ≤ 1

T

∑T
t=1 r

>
t pt

≤ 1
T

∑T
t=1 r

>
t p
∗ + 1

T RegretT (AOCO) low regret of AOCO

≤ 1
2 + 1

T RegretT (AOCO)

≤ 1
2 + γ

2

This is a contradiction. We conclude that a distribution p∗ cannot exist, and thus all examples in S are
classified correctly.
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2.3 AdaBoost

A special case of the template reduction we have described is obtained when the OCO algorithm is taken to
be the Multiplicative Updates method we have come to know in the manuscript.

We have a bound of O(
√
T logm) on the regret of the EG algorithm in our context. This bounds T in

Algorithm 1 by O( 1
γ2

logm).
Closely related is the AdaBoost algorithm, which is one of the most useful and successful algorithms

in Machine Learning at large (see bibliography). Unlike the Boosting algorithm that we have analyzed,
AdaBoost doesn’t have to know in advance the parameter γ of the weak learners. Pseudo code for the
AdaBoost algorithm is given in 2.

Algorithm 2 AdaBoost
Input: H, ε, δ, γ-weak-learner AWL, sample Sm ∼ D.
Set p1 ∈ ∆m be the uniform distribution over S.
for t = 1, 2 . . . T do

Find hypothesis ht ← AWL(pt,
δ
T )

Calculate εt = errorS,pt(ht), αt = 1
2 log(1−εtεt

)
Update,

pt+1(i) =
pt(i)e

−αtht(i)∑m
j=1 pt(j)e

−αtht(j)

end for
Return: h̄(x) = sign(

∑T
t=1 ht(x))

2.4 Completing the picture

In our discussion so far we have focused only on the empirical error over a sample. To show generalization
and complete the Boosting theorem, one must show that

1. zero empirical error on a sample implies ε generalization error on the underlying distribution for a
large enough sample.

2. Deal with the fact that the hypothesis returned by the Boosting algorithms does not belong to the
original concept class.
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