THE LINEAR ALGEBRAIC STRUCTURE OF WORD MEANINGS

Tengyu Ma

Joint works with Sanjeev Arora, Yuanzhi Li, Yingyu Liang, and Andrej Risteski

Princeton University

EMBEDDINGS (IN MACHINE LEARNING)

WORD EMBEDDING

Vocabulary =
{ 60k most frequent words }

Goal: Embedding captures semantics information

(via linear algebraic operations)

- inner products characterize similarity
 - similar words have large inner products
- differences characterize relationship
 analogous pairs have similar differences

> more?

picture: Chris Olah's blog

WORD EMBEDDING, AN OLD IDEA

Meaning of a word is determined by words it co-occurs with.

(Distributional hypothesis of meaning, [Harris'54], [Firth'57])

- Pr(x, y) ≜ prob. of co-occurrences of x, y in a window of size 5
- v_x = row of entry-wise square-root of
 co-occurrence matrix [Rohde et al'05]

LINEAR STRUCTURE AFTER NON-LINEAR EMBEDDING

Algorithm [Levy-Goldberg]: (dimension-reduction version of [Church-Hanks'90])

- $\succ \text{ Compute PMI}(x, y) = \log \frac{\Pr[x, y]}{\Pr[x] \Pr[y]}$
- Take rank-300 SVD (best rank-300 approximation) of PMI
 - $\blacktriangleright \Leftrightarrow$ Fit PMI $(x, y) \approx \langle v_x, v_y \rangle$ (with squared loss), where $v_x \in \mathbb{R}^{300}$

 \succ "Linear structure" in the found v_x 's :

 $v_{woman} - v_{man} \approx v_{queen} - v_{king} \approx v_{uncle} - v_{aunt} \approx \cdots$

APPLICATIONS/TESTS : SOLVING ANALOGY TASKS

> Questions: woman: man queen: ? aunt: ?

> Answers:
$$king = \operatorname{argmin}_{w} || (v_{queen} - v_{w}) - (v_{woman} - v_{man}) ||$$

 $aunt = \operatorname{argmin}_{w} || (v_{uncle} - v_{w}) - (v_{woman} - v_{man}) ||$

NON-LINEAR EMBEDDING METHODS

recurrent neural network based model [Mikolov et al'12]

➤word2vec [Mikolov et al'13]:

$$\Pr[x_{i+6} \mid x_{i+1}, \dots, x_{i+5}] \propto \exp(v_{x_{i+6}}, \frac{1}{5}(v_{x_{i+1}} + \dots + v_{x_{i+5}}))$$

➢GloVe [Pennington et al'14]:

$$\log \Pr[x, y] \approx \langle v_x, v_y \rangle + s_x + s_y + C$$

[Levy-Goldberg'14] (Previous slide)

$$PMI(x, y) = \log \frac{\Pr[x, y]}{\Pr[x] \Pr[y]} \approx \langle v_x, v_y \rangle + C$$

Logarithm (or exponential) seems to exclude linear algebra!

Why co-occurrence statistics + $\log \rightarrow$ linear structure

[Levy-Goldberg'13, Pennington et al'14, rephrased]

> For most of the words χ :

$$\frac{\Pr[\chi \mid king]}{\Pr[\chi \mid queen]} \approx \frac{\Pr[\chi \mid man]}{\Pr[\chi \mid woman]}$$

- For χ unrelated to gender: LHS, RHS ≈ 1
- for χ =dress, LHS, RHS \ll 1 ; for χ = John, LHS, RHS \gg 1

Fit suggests

$$\sum_{\chi} \left(\log \frac{\Pr[\chi \mid king]}{\Pr[\chi \mid queen]} - \log \frac{\Pr[\chi \mid man]}{\Pr[\chi \mid woman]} \right)^2 \approx 0$$

$$= \sum_{\chi} \left(\left(PMI(\chi, king) - PMI(\chi, queen) \right) - \left(PMI(\chi, man) - PMI(\chi, woman) \right) \right)^2 \approx 0$$

- Rows of PMI matrix has "linear structure"
- > Empirically one can find v_w 's s.t. $PMI(\chi, w) \approx \langle v_{\chi}, v_w \rangle$
- > Suggestion: v_w 's also have linear structure

WHY THESE METHODS CAN WORK?

M1: Why do low-dim vectors capture essence of huge co-occurrence statistics? That is, why is a low-dim fit of PMI matrix even possible?

$$PMI(x, y) \approx \langle v_x, v_y \rangle$$
 (*)

> NB: PMI matrix is not necessarily PSD.

M2: Why low-dim vectors solves analogy when (*) is only roughly true? $\stackrel{(*)}{\longrightarrow}$ empirical fit has 17% error

NB: solving analogy task requires inner products of 6 pairs of word vectors, and that "king" survives against all other words – noise is potentially an issue! king = argmax_w || (v_{queen} – v_w) – (v_{woman} – v_{man}) ||²

Fact: low-dim word vectors have more accurate linear structure than the rows of PMI (therefore better analogy task performance).

OUR INSIGHTS

M1: Why do low-dim vectors capture essence of huge co-occurrence statistics? That is, why is a low-dim fit of PMI matrix even possible?

$$PMI(x, y) \approx \langle v_x, v_y \rangle$$
 (*)

A1: Under a generative model (named RAND-WALK) , (*) provably holds

M2: Why low-dim vectors solves analogy when (*) is only roughly true?

A2: (*) + isotropy of word vectors \Rightarrow low-dim fitting reduces noise

(Quite intuitive, though doesn't follow Occam's bound for PAC-learning)

RAND-WALK: A GENERATIVE MODEL FOR LANGUAGE

Hidden Markov Model:

- discourse vector $c_t \in \mathbb{R}^d$ governs the discourse/theme/context of time t
- words w_t (observable); embedding $v_{w_t} \in \mathbb{R}^d$ (parameters to learn)
- Iog-linear observation model

 $\Pr[w_t \mid c_t] \propto \exp\langle v_{w_t}, c_t \rangle$

Closely related to [Mnih-Hinton'07]

RAND-WALK: A GENERATIVE MODEL FOR LANGUAGE(CONT'D)

▶ Ideally, $c_t, v_w \in \mathbb{R}^d$ should contain semantic information in its coordinates

- E.g. (0.5, -0.3, ...) could mean "0.5 gender, -0.3 age,.."
- > But, the whole system is rotational invariant: $\langle c_t, v_w \rangle = \langle Rc_t, Rv_w \rangle$
- There should exist a rotation so that the coordinates are meaningful (back to this later)

- > Assumptions:
 - $\{v_w\}$ consists of vectors drawn from $s \cdot \mathcal{N}(0, \mathrm{Id})$; s is bounded scalar r.v.
 - c_t does a slow random walk (doesn't change much in a window of 5)
 - log-linear observation model: $\Pr[w_t \mid c_t] \propto \exp(v_{w_t}, c_t)$

Main Theorem:

(1)
$$\log \Pr[w, w'] = \|v_w + v_{w'}\|^2 / d - 2\log Z \pm \epsilon$$

(2)
$$\log \Pr[w] = \|v_w\|^2 / d - \log Z \pm \epsilon$$

(3)
$$PMI(w, w') = \langle v_w, v_{w'} \rangle / d \pm \epsilon$$

Fact: (2) implies that the words have power law dist.

Norm determines frequency; spatial orientation determines "meaning"

EXPLAINING EXISTING METHODS

► word2vec [Mikolov et al'13] :

$$\Pr[w_{i+6} \mid w_{i+1}, \dots, w_{i+5}] \propto \exp(v_{w_{i+6}}, \frac{1}{5}(v_{w_{i+1}} + \dots + v_{w_{i+5}}))$$

► GloVe [Pennington et al'14] :

log Pr[w, w']
$$\approx \langle v_w, v_{w'} \rangle + s_w + s_{w'} + C$$

q. (1) log Pr[w, w'] = $||v_w + v_{w'}||^2 / d - 2 \log Z \pm \epsilon$

[Levy-Goldberg'14]

$$PMI(w, w') \approx \langle v_w, v_{w'} \rangle + C$$
$$PMI(w, w') = \langle v_w, v_{w'} \rangle / d \pm \epsilon$$

Ε

EXPLAINING EXISTING METHODS CONT'D

>word2vec [Mikolov et al'13]:

$$\Pr[w_{i+6} \mid w_{i+1}, \dots, w_{i+5}] \propto \exp\{v_{w_{i+6}}, \frac{1}{5}(v_{w_{i+1}} + \dots + v_{w_{i+5}})\}$$

$$\uparrow$$

$$\max-likelihood$$
estimate of c_{i+6}

$$> \text{ Under our model,}$$

$$\cdot \text{ Random walk is slow: } c_{i+1} \approx c_{i+2} \approx \dots \approx c_{i+6} \approx c$$

$$\cdot \text{ Best estimate for current discourse } c_{i+6}:$$

$$\arg\max \Pr[c \mid w_{i+1}, \dots, w_5] = \alpha(v_{w_{i+1}} + \dots + v_{w_{i+5}})$$

$$\cdot \text{ Prob. distribution of next word given the best guess } c:$$

$$\Pr[w_{i+6} \mid c_{i+6} = \alpha(v_{w_{i+1}} + \dots + v_{w_{i+5}})] \propto \exp\{v_{w_{i+6}}, \alpha(v_{w_{i+1}} + \dots + v_{w_{i+5}})\}$$

PROOF SKETCH OF MAIN THM.

$$Pr[w | c] = \frac{1}{z_c} \cdot exp(v_w, c)$$

$$Pr[w | c] = \frac{1}{z_c} \cdot exp(v_w, c)$$

$$Pr[w | c] = \int Pr[w | c] Pr[w' | c'] p(c, c') dcdc'$$

$$Pr[w, w'] = \int Pr[w | c] Pr[w' | c'] p(c, c') dcdc'$$

$$= \int \frac{1}{Z_c Z_{c'}} \cdot exp(v_w, c) exp(v_{w'}, c') p(c), \implies \mathbb{E}[exp(v, c)] = exp||v||^2/d$$

$$Pr[w | c] \propto exp(v_w, c)$$

Eq. (1) $\log \Pr[w, w'] = ||v_w + v_{w'}||^2 / d - 2 \log Z \pm \epsilon$

This talk: window of size 2

PROOF SKETCH OF MAIN THM CONT'D

$$\succ \Pr[w \mid c] = \frac{1}{Z_c} \cdot \exp\langle v_w, c \rangle$$

 $\succ Z_c = \sum_w \exp\langle v_w, c \rangle$ partition function

Lemma 1: for almost all c, almost all $\{v_w\}$, $Z_c = (1 + o(1))Z$

Proof (sketch) :

- for most c, Z_c concentrates around its mean
- mean of Z_c is determined by ||c||, which in turn concentrates
- caveat: $\exp(v, c)$ for $v \sim \mathcal{N}(0, \mathrm{Id})$ is not subgaussian, nor subexponential. (α -Orlicz norm is not bounded for any $\alpha > 0$)

Eq. (1)
$$\log \Pr[w, w'] = ||v_w + v_{w'}||^2 / d - 2 \log Z \pm \epsilon$$

A HEAVY TAIL PHENOMENON

Lemma 1: for almost all c, almost all $\{v_w\}$, $Z_c = (1 + o(1))Z$

Proof Sketch:

 \succ Fixing *c*, to show high probability over choices of v_w 's

$$Z_c = \sum_{w} \exp\langle v_w, c \rangle = (1 + o(1)) \mathbb{E}[Z_c]$$

 $\succ z_w = \langle v_w, c \rangle$ scalar Gaussian random variable

- \succ ||*c*|| governs the mean and variance of z_w .
- > ||c|| in turns is concentrated

A HEAVY TAIL PHENOMENON

> Question:
$$z_1, ..., z_n \sim \mathcal{N}(0, 1)$$

$$Z = \sum_{i=1}^n \exp(z_i)$$

- ➢ How is Z concentrated?
- ► $\mathbb{E}[Z_c] = \Theta(n)$, and $\mathbb{V}ar[Z_c] = O(n)$
- > The tail of $exp(z_i)$ is bad!
 - \succ Pr[exp $z_i > t$] $\approx t^{-\log t}$

> (sub)-Gaussian tail
 Pr[X > t] ≤ exp(-t²/2)
 > (sub)-exponential tail
 Pr[X > t] ≤ exp(-t/2)

> Claim:

$$\Pr[Z > \mathbb{E}Z + C\sqrt{n} \cdot \log n] \le \exp(-\log^2 n)$$

 \succ Trick: truncate z_i at log n and deal with the tail by union bound

A HEAVY TAIL PHENOMENON

Lemma 1: for almost all c, almost all $\{v_w\}$, $Z_c = (1 + o(1))Z$

- Proof Sketch:
- > Fixing c, we have with high probability over choices of v_w 's

$$Z_{c} = \sum_{w} \exp\langle v_{w}, c \rangle = (1 + o(1)) \mathbb{E}[Z_{c}]$$

- $\succ z_w = \langle v_w, c \rangle$ scalar Gaussian random variable
- \succ ||*c*|| governs the mean and variance of z_w .
- ▶ ||c|| in turns is concentrated

PROOF SKETCH OF MAIN THM CONT'D

$$\succ \Pr[w \mid c] = \frac{1}{Z_c} \cdot \exp\langle v_w, c \rangle$$

 $> Z_c = \sum_w \exp(v_w, c)$ partition function

Lemma 1: for almost all c, almost all $\{v_w\}$, $Z_c = (1 + o(1))Z$
$$\Pr[w, w'] = \int \frac{1}{Z_c Z_{c'}} \cdot \exp\langle v_w + v_{w'}, c \rangle p(c) dc$$
$$= \left(1 \pm o(1)\right) \frac{1}{Z^2} \int \exp\langle v_w + v_{w'}, c \rangle p(c) dc$$
$$= \left(1 \pm o(1)\right) \frac{1}{Z^2} \exp(||v_w + v_{w'}||^2/d)$$

Eq. (1) $\log \Pr[w, w'] = ||v_w + v_{w'}||^2 / d - 2 \log Z \pm \epsilon$

MODEL VERIFICATION

Our theory predicts

Eq. (1)
$$\log \Pr[w, w'] = ||v_w + v_{w'}||^2 / d - 2 \log Z \pm \epsilon$$

(Approximate) maximum likelihood objective (SN)

$$\min_{\{v_w\},Y} \sum_{w,w'} \widehat{\Pr}[w,w'] (\log \widehat{\Pr}[w,w'] - \|v_w + v_{w'}\|^2 - Y)^2$$

Simplest word embedding method yet (fewest "knobs" to turn) Comparable performance on analogy test

	Relations	SN	GloVe	CBOW	skip-gram
G	semantic	0.84	0.85	0.79	0.73
	syntactic	0.61	0.65	0.71	0.68
	total	0.71	0.73	0.74	0.70
M	adjective	0.50	0.56	0.58	0.58
	noun	0.69	0.70	0.56	0.58
	verb	0.48	0.53	0.64	0.56
	total	0.53	0.57	0.62	0.57

MODEL VERIFICATION CONT'D

Our theory predicts

Eq. (2) $\log \Pr[w] = \|v_w\|^2 / d - \log Z \pm \epsilon$

MODEL VERIFICATION CONT'D

Our theory predicts

 $Z_c = (1 \pm o(1))Z$

WRAP UP

Under generative model RANK-WALK

For most of the words χ :

Beyond only solving analogy task?

Extracting more information from analogy/embeddings?

Some recent work:

Extracting different meanings from word embeddings (same team: Arora, Li, Liang, M., Risteski)

POLYSEMY

"Tie" can mean article of clothing, or physical act

Tie represents unrelated words tie₁, tie₂, etc.

Quick experiment: Take two random/unrelated words w_1 , w_2 where w_1 is ~100 times more frequent than w_2 . Declare these to be a single word and compute its embedding in our model.

Result: close to something like $0.8v_{w_1} + 0.2v_{w_2}$

- Mathematical explanation
- > Merge w_1, w_2 as w. Let $r = \frac{\Pr[w_1]}{\Pr[w_2]} > 1$
- ▶ Then $v_w \approx \alpha v_{w_1} + \beta v_{w_2}$, where
 - $\alpha = 1 c_1 \log \left(1 + \frac{1}{r}\right) \approx 1$
 - $\beta = 1 c_2 \log r$
- $\succ \beta > .1$ even if r = 100 !
- Rare meaning is not swamped, thanks to the log !

EXTRACTING DIFFERENT MEANINGS

"Tie" can mean article of clothing, or physical act

$$v_w = x_{w,1}a_1 + x_{w,2}a_2 + \dots + noise$$

 x_w has only 5 non-zeros

Representative subset of 2000 discourses (represented using their nearest words)

Atom 1978	825	231	616	1638	149	330
drowning	instagram	stakes	membrane	slapping	orchestra	conferences
suicides	twitter	thoroughbred	mitochondria	pulling	philharmonic	meetings
overdose	facebook	guineas	cytosol	plucking	philharmonia	seminars
murder	tumblr	preakness	cytoplasm	squeezing	conductor	workshops
poisoning	vimeo	filly	membranes	twisting	symphony	exhibitions
commits	linkedin	fillies	organelles	bowing	orchestras	organizes
stabbing	reddit	epsom	endoplasmic	slamming	toscanini	concerts
strangulation	myspace	racecourse	proteins	tossing	concertgebouw	lectures
gunshot	tweets	sired	vesicles	grabbing	solti	presentations

 \uparrow closest words to a_{231}

5 atoms that express v_{tie}

Atom 1005	31	1561	2060	1563
trousers	season	scoreline	wires	operatic
blouse	teams	goalless	cables	soprano
waistcoat	winning	equaliser	wiring	mezzo
skirt	league	clinching	electrical	$\operatorname{contralto}$
sleeved	finished	scoreless	wire	baritone
pants	championship	replay	cable	coloratura

MULTI-LAYER SPARSE CODING

Atoms of discourse found are fairly fine-grained

> Maybe $a_{biochemistry} = \alpha \cdot b_{biology} + \beta \cdot b_{chemistry}$?

> Another layer:

 $\min_{B,Y \, sparse} ||A - BY||^2$

411
acids
amino
biosynthesis
peptide
biochemistry

MULTI-LAYER SPARSE CODING CONT'D

Atom	28	2016	468	1318	411
	logic	graph	boson	polyester	acids
	deductive	$\operatorname{subgraph}$	massless	polypropylene	amino
	propositional	bipartite	particle	resins	biosynthesis
	semantics	vertex	higgs	epoxy	peptide
tag	logic	graph theory	particle physics	polymer	biochemistry

CONCLUSIONS

> Part I: new generative model that captures semantics.

- Provable guarantee:
 - Iog of co-occurrence matrix has low rank structure
 - semantic analogy ⇔ linear algebraic structure for word vectors
- Simplistic assumptions, but good fit to reality
- Part II: automatic way of detect word meanings
 - Hierarchical basis in the embedding space

Other applications of our model/method?

AN IDEAL SCENARIO

 \succ Each ordinate of v_w means something:

 $v_{USA} = [\dots, 0, \dots, 1, \dots, 0, \dots, 1, \dots, 0, \dots, 1]$ $v_{China} = [\dots, 0, \dots, 1, \dots, 0, \dots, 1, \dots, 0, \dots, 1]$ $v_{RMB} = [\dots, 1, \dots, 0, \dots, 0, \dots, 1, \dots, 0]$

On other coordinates, the values are either very small or the supports are nonoverlapping

$$v_{USA} - v_{dollar} = [\dots, -1, \dots, 1, \dots, 0, \dots, 0, \dots]$$
$$v_{China} - v_{RMB} = [\dots, -1, \dots, 1, \dots, 0, \dots, 0, \dots]$$

Problem: rotational invariance – rotation of word vectors doesn't change the model.

REVISED IDEA: SPARSE CODING

With sparsity, the model is identifiable; allows overcomplete basis; is tractable under mild assumptions. [SWW'12] [AGM'13][AAJNT'13][AGMM'14]

EXPERIMENTS

$$\min_{X \text{ sparse, } R} ||V - X \cdot R||_F^2$$

- V contains word vectors as rows (obtained from any embedding method)
- Sparsity of rows of X is chosen to be 5
- > R contains 2000 basis vectors (as rows), each of which is 300-dim

RESOLVING MYSTERY 2

Assuming M1 was answered,

$$PMI(w,w') = \langle v_w, v_{w'} \rangle + \xi \qquad (*)$$

with large ξ

M2: Why low-dim vectors solves analogy when (*) is only roughly true?

A2: (*) + isotropy of word vectors \Rightarrow low-dim fitting reduces noise

(Quite intuitive, though doesn't follow Occam's bound for PAC-learning)

SLOW RANDOM WALK ILLUSTRATION

 \succ Our theory assumes that c_t does a slow random walk

red dot: the estimate hidden variable c_t at time t

sentence at top: the window of size 10 at time t

RESOLVING MYSTERY 2

Assuming M1 was answered,

$$PMI(w,w') = \langle v_w, v_{w'} \rangle + \xi \qquad (*)$$

with large ξ

M2: Why low-dim vectors solves analogy when (*) is only roughly true?

A2: (*) + isotropy of word vectors \Rightarrow low-dim fitting reduces noise

(Quite intuitive, though doesn't follow Occam's bound for PAC-learning)

