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𝑥 ∈ 𝒳																						
																			

																		𝑣&	 ∈ ℝ(

complicated	space Euclidean	space	with		
meaningful inner	products

Ø Kernel	methods
)*+,-.*/01,	23/03+4

Linearly	separable

Ø Neural	nets 0.*3+1,	+15.*2	+106 Multi-class	linear	
classifier	



Vocabulary =
{ 60k most frequentwords }

																			
ℝ788

Goal:	Embedding	captures	semantics	information

(via	linear	algebraic	operations)

Ø inner products characterize similarity
Ø similar	words	have	large	inner	products

Ø differences	characterize	relationship	
Øanalogous	pairs	have	similar	differences

Ø more? picture:	Chris	Olah’s blog



Meaning	of	a	word	is	determined	by	words	it	co-occurs	with.

(Distributional	hypothesis	of	meaning,	[Harris’54],	[Firth’57])

⋯
⋮
⋮ ⋱ ⋮

⋮
⋯

word 𝑥 → 𝑣&

word 𝑦
↓

Ø Pr 𝑥, 𝑦 ≜	 prob.	of	co-occurrences	
of	𝑥, 𝑦 in	a	window	of	size	5

Ø 𝑣&, 𝑣C - a	good	measure	of	
similarity	of	(𝑥, 𝑦) [Lund-Burgess’96]	

Ø 𝑣& =	row	of	entry-wise square-root	of	
co-occurrence	matrix	[Rohde	et	al’05]

Ø 𝑣& =	row	of	PMI 𝑥, 𝑦 = log L.	[&,C]
L. & L.[C]

matrix	[Church-Hanks’90]

Co-occurrence	matrix
Pr ⋅,⋅



Ø “Linear	structure”	in	the	found	𝑣&’s	:

𝑣PQRST − 𝑣RST	 ≈ 𝑣WXYYT	 − 𝑣Z[T\	 ≈ 𝑣XT]^Y	 − 𝑣SXT_ ≈ ⋯

aunt

king

uncle
man

woman

queen

Algorithm [Levy-Goldberg]:	(dimension-reduction	version	of		[Church-Hanks’90])

Ø Compute		PMI 𝑥, 𝑦 = log L.	[&,C]
L. & L.[C]

Ø Take	rank-300	SVD	(best	rank-300	approximation)	of	PMI
Ø ⇔ Fit	PMI 𝑥, 𝑦 ≈ 〈𝑣&, 𝑣C〉 (with	squared	loss),	where	𝑣& ∈ ℝ788



Ø Questions:	 woman:	man
queen:	?

,aunt:	?			

Ø Answers:		 𝑘𝑖𝑛𝑔 = argmink|| 𝑣WXYYT − 𝑣P − (𝑣PQRST−𝑣RST)||	

𝑎𝑢𝑛𝑡 = argmink|| 𝑣XT]^Y − 𝑣P − (𝑣PQRST−𝑣RST)||	

aunt

king

uncle
man

woman

queen



Ørecurrent	neural	network	based	model	[Mikolov et	al’12]	

Øword2vec	[Mikolov et	al’13]	:	

Pr 𝑥[pq 𝑥[pr,… , 𝑥[pt ∝ exp〈𝑣&yz{ ,
1
5 𝑣&yz~ +⋯+ 𝑣&yz� 〉

ØGloVe [Pennington	et	al’14]	:	

log Pr	[𝑥, 𝑦] ≈ 𝑣&, 𝑣C + 𝑠& + 𝑠C + 𝐶

Ø [Levy-Goldberg’14]	(Previous	slide)

PMI 𝑥, 𝑦 = log L.	[&,C]
L. & L.[C] ≈ 𝑣&, 𝑣C + 𝐶

Logarithm	(or	exponential)	seems	to	exclude	linear	algebra!		



Why	co-occurrence	statistics	+	log	à linear	structure	
[Levy-Goldberg’13,	Pennington	et	al’14,	rephrased]

Ø For	most	of	the	words	𝜒:

Pr[𝜒	 ∣ 	𝑘𝑖𝑛𝑔]
Pr[𝜒	 ∣ 	𝑞𝑢𝑒𝑒𝑛] ≈

Pr[𝜒 ∣ 𝑚𝑎𝑛]
Pr 𝜒	 	𝑤𝑜𝑚𝑎𝑛]

§ For	𝜒 unrelated	to	gender:	LHS,	RHS	≈ 1

§ for	𝜒	=dress,	LHS,	RHS	≪ 1 ;			for	𝜒 =	John,	LHS,	RHS	≫ 1

ØIt	suggests

=� PMI 𝜒, 𝑘𝑖𝑛𝑔 − PMI 𝜒, 𝑞𝑢𝑒𝑒𝑛 − PMI 𝜒, 𝑚𝑎𝑛 − PMI 𝜒, 𝑤𝑜𝑚𝑎𝑛
�

�

≈ 0

Ø Rows	of	PMI	matrix	has	“linear	structure”	

Ø Empirically	one	can	find	𝑣P’s	s.t. PMI 𝜒, 𝑤 ≈ 〈𝑣�, 𝑣P〉

Ø Suggestion:	𝑣P’s	also	have	linear	structure	

� log
Pr 𝜒	 	𝑘𝑖𝑛𝑔
Pr 𝜒 𝑞𝑢𝑒𝑒𝑛 − log

Pr 𝜒 𝑚𝑎𝑛
Pr 𝜒	 	𝑤𝑜𝑚𝑎𝑛]

�

�

≈ 0



M1:	Why	do	low-dim	vectors	capture	essence	of	huge	co-occurrence	
statistics?	That	is,	why	is	a	low-dim	fit	of	PMI	matrix	even	possible?

PMI 𝑥, 𝑦 ≈ 𝑣&, 𝑣C (∗)

M2:	Why	low-dim	vectors	solves	analogy	when	(∗) is	only	roughly	true?	

Ø NB:	solving	analogy	task	requires	inner	products	of	6	pairs	of	word	vectors,	and	
that	“king”	survives	against	all	other	words	– noise	is	potentially	an	issue!

𝑘𝑖𝑛𝑔 = argmaxk|| 𝑣WXYYT − 𝑣P − (𝑣PQRST−𝑣RST)	||�

Ø Fact:	low-dim	word	vectors	have	more	accurate linear	structure	than	the	
rows	of	PMI	(therefore	better	analogy	task	performance).	

↑
empirical	fit	has	17%	error

Ø NB:	PMI	matrix	is	not	necessarily	PSD.	



M1:	Why	do	low-dim	vectors	capture	essence	of	huge	co-occurrence	
statistics?	That	is,	why	is	a	low-dim	fit	of	PMI	matrix	even	possible?

PMI 𝑥, 𝑦 ≈ 𝑣&, 𝑣C (∗)

A1:	Under	a	generative	model	(named	RAND-WALK)	,		(*)	provably holds

M2:	Why	low-dim	vectors	solves	analogy	when	(∗) is	only	roughly	true?	

A2:	(*)	+	isotropy	of	word	vectors	⇒ low-dim	fitting	reduces	noise	

(Quite	intuitive,	 though	 doesn’t	 follow	Occam’s	bound	 for	PAC-learning)	



Ø Hidden	Markov	Model:		
§ discourse	vector	𝑐_ ∈ ℝ( governs	the	discourse/theme/context	of	time	𝑡
§ words	𝑤_ (observable);	embedding	𝑣P� ∈ ℝ

( (parameters	to	learn)	
§ log-linear	observation	model	

Pr[𝑤_ ∣ 𝑐_] ∝ exp〈𝑣P�,𝑐_〉

Ø Closely	related	to	[Mnih-Hinton’07]

𝑐_ 𝑐_pr 𝑐_p� 𝑐_p7

𝑤_ 𝑤_pr 𝑤_p� 𝑤_p7 𝑤_p�

𝑐_p�



Ø Ideally,	𝑐_, 𝑣P ∈ ℝ( should	contain	semantic	information	in	its	coordinates
§ E.g.	(0.5,	-0.3,	…)	could	mean	“0.5	gender,	-0.3	age,..”

Ø But,	the	whole	system	is	rotational	invariant:	 𝑐_, 𝑣P = 〈𝑅𝑐_,𝑅𝑣P〉

Ø There	should	exist	a	rotation	so	that	the	coordinates	are	meaningful	(back	to	
this	later)		

𝑐_ 𝑐_pr 𝑐_p� 𝑐_p7

𝑤_ 𝑤_pr 𝑤_p� 𝑤_p7 𝑤_p�

𝑐_p�



Ø Assumptions:	
§ {𝑣P}	consists	of	vectors	drawn	from	𝑠 ⋅ 𝒩(0, Id);	𝑠 is	bounded	scalar	r.v.
§ 𝑐_ does	a	slow	random	walk	(doesn’t	change	much	in	a	window	of	5)
§ log-linear	observation	model:	Pr[𝑤_ ∣ 𝑐_] ∝ exp〈𝑣P�,𝑐_〉

Ø Main	Theorem:	

(1) log	Pr 𝑤,𝑤′ = 𝑣P + 𝑣P� �/𝑑 − 2 log𝑍 ± 𝜖

(2)																													log	Pr 𝑤 = 𝑣P �/𝑑 − log𝑍 ± 𝜖

(3) 						PMI 𝑤,𝑤� = 𝑣P, 𝑣P¢ /𝑑 ± 𝜖

Ø Norm	determines	frequency;	spatial	orientation	determines	“meaning”

𝑐_ 𝑐_pr 𝑐_p� 𝑐_p7

𝑤_ 𝑤_pr 𝑤_p� 𝑤_p7 𝑤_p�

𝑐_p�

Fact:	(2)	implies	 that	
the	words	have	power	
law	dist.



Øword2vec	[Mikolov et	al’13]	:	

Pr 𝑤[pq 𝑤[pr,… ,𝑤[pt ∝ exp〈𝑣Pyz{ ,
1
5 𝑣Pyz~ +⋯+ 𝑣Pyz� 〉

ØGloVe [Pennington	et	al’14]	:	

log Pr	[𝑤,𝑤′] ≈ 𝑣P, 𝑣P¢ + 𝑠P + 𝑠P� + 𝐶

Eq.	(1)				 log	Pr 𝑤,𝑤� = 𝑣P + 𝑣P¢ � /𝑑 − 2 log𝑍 ± 𝜖

Ø [Levy-Goldberg’14]

PMI 𝑤,𝑤� ≈ 𝑣P, 𝑣P¢ + 𝐶

Eq.	(3)																																					PMI 𝑤, 𝑤� = 𝑣P, 𝑣P¢ /𝑑 ± 𝜖



Øword2vec	[Mikolov et	al’13]	:	

Pr 𝑤[pq 𝑤[pr,… , 𝑤[pt ∝ exp〈𝑣Pyz{ ,
1
5 𝑣Pyz~ + ⋯+ 𝑣Pyz� 〉

Ø Under	our	model,	

§ Random	walk	is	slow:	𝑐[pr ≈ 𝑐[p�	 ≈ ⋯ ≈ 𝑐[pq ≈ 𝑐

§ Best	estimate	for	current	discourse	𝑐[pq	:

															argmax
],||]||£r

Pr 𝑐	 𝑤[pr,… ,𝑤t]	 = 𝛼 𝑣Pyz~ + ⋯+ 𝑣Pyz�

§ Prob.	distribution	of	next	word	given	the	best	guess	𝑐:	

Pr[𝑤[pq ∣ 𝑐[pq	 = 𝛼 𝑣Pyz~ + ⋯+ 𝑣Pyz� ] ∝ exp〈𝑣Pyz{ ,𝛼	 𝑣Pyz~ +⋯+ 𝑣Pyz� 〉

↑
max-likelihood	
estimate	of	𝑐[pq

𝑐[p� 𝑐[pt

𝑤[p� 𝑤[pt 𝑤[pq

𝑐[pq



Pr[𝑤,𝑤�] = ¥ Pr 𝑤	 	𝑐] Pr 𝑤� 	𝑐′] 	𝑝 𝑐, 𝑐� 𝑑𝑐𝑑𝑐′

																											= 	¥
1

𝑍]𝑍]�
⋅ exp 𝑣P, 𝑐 exp〈𝑣P¢ , 𝑐�〉 𝑝 𝑐, 𝑐� 𝑑𝑐𝑑𝑐′

Ø Assume	𝑐 = 𝑐′ with	probability	1,

= ¥exp〈𝑣P + 𝑣P¢, 𝑐〉 𝑝 𝑐 𝑑𝑐 = exp 𝑣P + 𝑣P¢ � /𝑑

??

This	talk:	window	of	size	2

Pr[𝑤 ∣ 𝑐] ∝ exp〈𝑣P, 𝑐〉

𝑐 𝑐′

𝑤 𝑤′

Pr[𝑤′ ∣ 𝑐′] ∝ exp〈𝑣P¢ , 𝑐′〉Ø Pr[𝑤 ∣ 𝑐] = r
§¨
⋅ exp〈𝑣P, 𝑐〉

Ø 𝑍] = ∑ exp	〈𝑣P, 𝑐〉P partition	function

Eq. (1) log	Pr 𝑤, 𝑤� = 𝑣P + 𝑣P¢ � /𝑑 − 2 log𝑍 ± 𝜖

spherical	Gaussian	vector	𝑐
Ø 𝔼 exp 𝑣, 𝑐 = exp 𝑣 �/𝑑



This	talk:	window	of	size	2

Pr[𝑤 ∣ 𝑐] ∝ exp〈𝑣P, 𝑐〉

𝑐 𝑐′

𝑤 𝑤′

Pr[𝑤′ ∣ 𝑐′] ∝ exp〈𝑣P¢ , 𝑐′〉Ø Pr[𝑤 ∣ 𝑐] = r
§¨
⋅ exp〈𝑣P, 𝑐〉

Ø 𝑍] = ∑ exp	〈𝑣P, 𝑐〉P partition	function

Lemma	1:	for	almost	all	c,	almost	all	 𝑣P ,
𝑍] = 1 + 𝑜 1 𝑍			

Ø Proof	(sketch)	:		
§ for	most	𝑐,		𝑍] concentrates	around	its	mean
§ mean	of	𝑍] is	determined	by	||𝑐||,	which	in	turn	concentrates	
§ caveat:	exp〈𝑣, 𝑐〉 for	𝑣 ∼𝒩(0, Id) is	not	subgaussian,		nor	sub-
exponential.	(	𝛼-Orlicz norm	is	not	bounded	for	any	𝛼 > 0)			

Eq. (1) log	Pr 𝑤, 𝑤� = 𝑣P + 𝑣P¢ � /𝑑 − 2 log𝑍 ± 𝜖



Ø Proof	Sketch:	

Ø Fixing	𝑐,	to	show	high	probability	over	choices	of	𝑣P’s

𝑍] =�exp〈𝑣P, 𝑐〉
P

= 1 + 𝑜 1 𝔼[𝑍]]

Ø 𝑧P = 〈𝑣P, 𝑐〉 scalar	Gaussian	random	variable

Ø ||𝑐|| governs	the	mean	and	variance	of	𝑧P.
Ø ||𝑐|| in	turns	is	concentrated

Lemma	1:	for	almost	all	c,	almost	all	 𝑣P ,
𝑍] = 1 + 𝑜 1 𝑍			



Ø Question:	𝑧r,… , 𝑧T ∼ 𝒩(0,1)

𝑍 = �exp(𝑧[)
T

[£r
Ø How	is	𝑍 concentrated	?	

Ø 𝔼 𝑍] = Θ(𝑛),	and	𝕍𝑎𝑟 𝑍] = O 𝑛
Ø The	tail	of	𝑒𝑥𝑝(𝑧[) is	bad!

Ø Pr exp𝑧[ > 𝑡 ≈ 𝑡² 2³4 _	

Ø Claim:	
Pr[𝑍 > 𝔼𝑍 + 𝐶 𝑛 ⋅ log 𝑛] ≤ exp(− log� 𝑛)

Ø Trick:	truncate	𝑧[ at	log	𝑛 and	deal	with	the	tail	by	union	bound

Ø (sub)-Gaussian	 tail	
Pr 𝑋 > 𝑡 ≤ exp(−𝑡�/2)

Ø (sub)-exponential	 tail	
Pr 𝑋 > 𝑡 ≤ exp(−𝑡/2)



Ø Proof	Sketch:	

Ø Fixing	𝑐,	we	have	with	high	probability	over	choices	of	𝑣P’s

𝑍] =�exp〈𝑣P, 𝑐〉
P

= 1 + 𝑜 1 𝔼[𝑍]]

Ø 𝑧P = 〈𝑣P, 𝑐〉 scalar	Gaussian	random	variable

Ø ||𝑐|| governs	the	mean	and	variance	of	𝑧P.
Ø ||𝑐|| in	turns	is	concentrated

Lemma	1:	for	almost	all	c,	almost	all	 𝑣P ,
𝑍] = 1 + 𝑜 1 𝑍			



Pr[𝑤,𝑤�] = 	¥
1

𝑍]𝑍]�
⋅ exp 𝑣P + 𝑣P¢, 𝑐 𝑝 𝑐 𝑑𝑐

																			= 1 ± 𝑜 1
1
𝑍� ¥ exp 𝑣P + 𝑣P¢, 𝑐 𝑝 𝑐 𝑑𝑐

																			= 1 ± 𝑜 1
1
𝑍� exp(||𝑣P + 𝑣P¢ ||

�/𝑑)

This	talk:	window	of	size	2

Pr[𝑤 ∣ 𝑐] ∝ exp〈𝑣P, 𝑐〉

𝑐 𝑐′

𝑤 𝑤′

Pr[𝑤′ ∣ 𝑐′] ∝ exp〈𝑣P¢ , 𝑐′〉

Eq. (1) log	Pr 𝑤, 𝑤� = 𝑣P + 𝑣P¢ � /𝑑 − 2 log𝑍 ± 𝜖

Ø Pr[𝑤 ∣ 𝑐] = r
§¨
⋅ exp〈𝑣P, 𝑐〉

Ø 𝑍] = ∑ exp	〈𝑣P, 𝑐〉P partition	function

Lemma	1:	for	almost	all	c,	almost	all	 𝑣P ,
𝑍] = 1 + 𝑜 1 𝑍			



Ø Our	theory	predicts	

Eq.	(1) log	Pr 𝑤, 𝑤� = 𝑣P + 𝑣P¢ � /𝑑 − 2 log𝑍 ± 𝜖

Ø (Approximate)	maximum	likelihood	objective	(SN)

min
{·¸},º

� Pr»[𝑤,𝑤�](logPr»[𝑤, 𝑤�] − 𝑣P + 𝑣P¢ �

P,P�

− 𝑌)�	

Simplest	word	embedding	method	yet	(fewest	“knobs”	to	turn)
Comparable	performance	on	analogy	test



Ø Our	theory	predicts	

Eq.	(2)											 log	Pr 𝑤 = 𝑣P �/𝑑 − log𝑍 ± 𝜖



Ø Our	theory	predicts	

𝑍] = 1± 𝑜 1 𝑍



ØUnder	generative	model	RANK-WALK

For	most	of	the	words	𝜒:

Pr[𝜒	 ∣ 𝑎]
Pr[𝜒	 ∣ 𝑏] ≈

Pr[𝜒 ∣ 𝑐]
Pr 𝜒	 	𝑑]

⟺ 𝑣S − 𝑣¿ ≈ 𝑣] − 𝑣(

↑
semantic	def.	of	analogy	

↑
algebraic	def.	of	analogy	

Ø Beyond	only	solving	analogy	task?

Ø Extracting	more	information	from	analogy/embeddings?		



Extracting	different	meanings	from	word	embeddings
(same	team:	Arora,	Li,	Liang,	M.,	Risteski)	

Some	recent	work:	



Ø “Tie”	can	mean	article	of	clothing,	or	physical	act	

ØTie represents	unrelated	words	tie1,	tie2,	etc.

Quick	experiment:	Take	two	random/unrelatedwords	w1,	w2 where	
w1 is	~100	times	more	frequent	than	w2 .	Declare	these	to	be
a	single	word	and	compute	its	embedding	in	our	model.

Result:	close	to	something	like	0.8𝑣P~ + 0.2𝑣PÂ



Ø Mathematical	explanation

Ø Merge	𝑤r,𝑤� as	𝑤.	Let	𝑟 =
L.[P~]
L.[PÂ]

> 1

Ø Then	𝑣P ≈ 𝛼𝑣P~ + 𝛽𝑣PÂ,	where	
§ 𝛼 = 1 − 𝑐r log 1 + r

Ä ≈ 1
§ 𝛽 = 1 − 𝑐� log 𝑟

Ø 𝛽 > .1 even	if	𝑟 = 100 !

Ø Rare	meaning	is	not	swamped,	thanks	to	the	log !



which	correspond	to	different	representative	“discourses”

𝑣_[Y = 0.8𝑎r + 0.2	𝑎� +	noise
↑

discourse	
for	𝑡𝑖𝑒r

↑
discourse	
for	𝑡𝑖𝑒�

Ø “Tie”	can	mean	article	of	clothing,	or	physical	act	

ØTie represents	unrelated	words	tie1,	tie2,	etc.

Ø Sparse	coding	for	extracting	different	meanings:	
§ Find	𝑚 = 2000	“discourses”	𝑎r,𝑎�,… ∈ ℝ( such	that	each	word	vector		
expressed	as	weighted	sum	of	at	most	5	of	them,	plus	“noise	vector.”	

𝑣P = 𝑥P,r𝑎r+ 𝑥P,�𝑎� +	…+ 		𝑛𝑜𝑖𝑠𝑒

𝑥P has	only	5	non-zeros

Ø Training	objective:	

min
Æ£[S~,…,SÇ]
ÈÉSÄÈY	&¸¢ È

� 𝑣P − 𝐴𝑥P �

P

Ø local	search	algo.	[EAB’05],	
provable	algo.	[SWW’12,	
AGM’14,	AGMM’15..]



other. Thus combining the bases while merging duplicates yielded a basis of about the same

size. Some atoms are were found to be semantically meaningless but are easily identified and

filtered out by checking if their closest words tend to have low pairwise inner products amongst

themselves (16).

The significant discourses represented by the basis vectors will henceforth be refered to as

atoms of discourse. The “meaning” of an atom can be discerned by looking at the set of words

whose embeddings are close to it. Table 1 contains some examples of the discourse atoms.

Atoms of discourse may be reminiscent of the results of other automated methods for ob-

taining a thematic understanding of text, such as topic modeling, described in the survey (17).

Indeed the model (1) used to compute the word embeddings is related to a log-linear topic model

from (18). However, the discourses here are computed via sparse coding on word embeddings,

which has no analog in topic modeling. There is also a long tradition of detecting coherent

clusters of word vectors using Brown clustering, or even sparse coding (19). The novelty in

the current paper is a clear interpretation of the basis –in terms of discourses— yielded by the

sparse coding, as well as its use to capture different senses of words.

Atom 1978 825 231 616 1638 149 330
drowning instagram stakes membrane slapping orchestra conferences
suicides twitter thoroughbred mitochondria pulling philharmonic meetings
overdose facebook guineas cytosol plucking philharmonia seminars
murder tumblr preakness cytoplasm squeezing conductor workshops
poisoning vimeo filly membranes twisting symphony exhibitions
commits linkedin fillies organelles bowing orchestras organizes
stabbing reddit epsom endoplasmic slamming toscanini concerts
strangulation myspace racecourse proteins tossing concertgebouw lectures
gunshot tweets sired vesicles grabbing solti presentations

Table 1: Some discourse atoms and their nearest 9 words. By (1) words most likely to appear
in a discouse are those nearest to it.

6

Representative	subset	of	2000	discourses	(represented	using	
their	nearest	words)

↑
closest	words	to	𝑎�7r



5	atoms	that	express	𝑣_[Y



Ø Atoms	of	discourse	found	are	fairly	fine-grained

Ø Maybe	𝑎¿[Q]ËYR[È_ÄC = 𝛼 ⋅ 𝑏¿[Q^Q\C + 𝛽 ⋅ 𝑏]ËYR[È_ÄC?

Ø Another	layer:	

min
Ì,º	ÈÉSÄÈY

||𝐴 − 𝐵𝑌||�





Ø Part	I:	new	generative	model	that	captures	semantics.	

Ø Provable	guarantee:	
§ log	of	co-occurrence	matrix	has	low	rank	structure		
§ semantic	analogy	⇔ linear	algebraic	structure	for	word	vectors

Ø Simplistic	assumptions,	but	good	fit	to	reality	

Ø Part	II:	automatic	way	of	detect	word	meanings
§ Hierarchical	basis	in	the	embedding	space

Ø Other	applications	of	our	model/method?	





Ø Each	ordinate	of	𝑣P means	something:

𝑣ÎÏÆ = […… ,0, ……… ,1, ……… ,1, ……… ,0, …… ]

𝑣(Q^^SÄ = […… ,1, ……… ,0, ……… ,1, ……… ,0, …… ]

𝑣ÐË[TS = […… ,0, ……… ,1, ……… ,0, ……… ,1, …… ]

𝑣ÑÒÌ = […… ,1, ……… ,0, ……… ,0, ……… ,1, …… ]

currency
↓

country
↓

American
↓

Chinese
↓

𝑣ÎÏÆ − 𝑣(Q^^SÄ = […… ,−1, ……… ,1, ……… ,0	 ……… ,0,…… ]

𝑣ÐË[TS − 𝑣ÑÒÌ = […… ,−1,……… , 1,……… , 0,……… , 0,… …]

Ø On	other	coordinates,	the	values	are	either	very	small	or	the	supports	are	non-
overlapping

Ø Problem:	rotational	invariance	– rotation	of	word	vectors	doesn’t	
change	the	model.	



𝑣ÎÏÆ = […… ,0, ……… ,1, ……… ,1, ……… ,0, …… ]

𝑣(Q^^SÄ = […… ,1, ……… ,0, ……… ,1, ……… ,0, …… ]

𝑣ÐË[TS = […… ,0, ……… ,1, ……… ,0, ……… ,1, …… ]

𝑣ÑÒÌ = […… ,1, ……… ,0, ……… ,0, ……… ,1, …… ]

currency
↓

country
↓

American
↓

Chinese
↓

⋅ 𝑅

↑
sparse	coefficients

↑
basis	vectors

ØWith	sparsity,	the	model	is	identifiable;	allows	overcomplete basis;	is	tractable	
under	mild	assumptions.	[SWW’12]	[AGM’13][AAJNT’13][AGMM’14]



min
Ó	6Ô*.61,	Ñ

	||𝑉 − 𝑋 ⋅ 𝑅||Ö�

Ø 𝑉 contains	word	vectors	as	rows	(obtained	from	any	embedding	method)

Ø Sparsity	of	rows	of	X	is	chosen	to	be	5	

Ø 𝑅	contains	2000	basis	vectors	(as	rows),	each	of	which	is	300-dim



Assuming	M1	was	answered,	

PMI 𝑤,𝑤� = 𝑣P, 𝑣P¢ + 𝜉 	(*)	
with	large	𝜉

M2:	Why	low-dim	vectors	solves	analogy	when	(*)	is	only	roughly	true?	

A2:	(*)	+	isotropy	of	word	vectors	⇒ low-dim	fitting	reduces	noise	

(Quite	intuitive,	 though	 doesn’t	 follow	Occam’s	bound	 for	PAC-learning)	



Ø Our	theory	assumes	that	𝑐_ does	a	slow	random	walk		

Ø red	dot:	the	estimate	hidden	
variable	𝑐_ at	time	𝑡

Ø sentence	at	top:	the	window	
of	size	10	at	time	𝑡



Assuming	M1	was	answered,	

PMI 𝑤,𝑤� = 𝑣P, 𝑣P¢ + 𝜉 	(*)	
with	large	𝜉

M2:	Why	low-dim	vectors	solves	analogy	when	(*)	is	only	roughly	true?	

A2:	(*)	+	isotropy	of	word	vectors	⇒ low-dim	fitting	reduces	noise	

(Quite	intuitive,	 though	 doesn’t	 follow	Occam’s	bound	 for	PAC-learning)	


