

Machine Learning Basics Lecture 6: Overfitting

Princeton University COS 495

Instructor: Yingyu Liang

Review: machine learning basics

Math formulation

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

 $L(f) = \mathbb{E}_{(x,y)\sim D}[l(f,x,y)]$

Machine learning 1-2-3

- Collect data and extract features
- Build model: choose hypothesis class ${\cal H}$ and loss function l
- Optimization: minimize the empirical loss

- Collect data and extract features
- Build model: choose hypothesis class ${\cal H}$ and loss function l
- Optimization: minimize the empirical loss

Occam's razor

Gradient descent; convex optimization

Overfitting

Linear vs nonlinear models

Polynomial kernel

Linear vs nonlinear models

- Linear model: $f(x) = a_0 + a_1 x$
- Nonlinear model: $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + ... + a_Mx^M$
- Linear model ⊆ Nonlinear model (since can always set a_i = 0 (i > 1))
- Looks like nonlinear model can always achieve same/smaller error
- Why one use Occam's razor (choose a smaller hypothesis class)?

Example: regression using polynomial curve $t = sin(2\pi x) + \epsilon$

Example: regression using polynomial curve $t = sin(2\pi x) + \epsilon$

Example: regression using polynomial curve $t = sin(2\pi x) + \epsilon$

Example: regression using polynomial curve $t = \sin(2\pi x) + \epsilon$

Example: regression using polynomial curve $t = \sin(2\pi x) + \epsilon$

Example: regression using polynomial curve

Prevent overfitting

- Empirical loss and expected loss are different
 - Also called training error and test/generalization error
- Larger the data set, smaller the difference between the two
- Larger the hypothesis class, easier to find a hypothesis that fits the difference between the two
 - Thus has small training error but large test error (overfitting)
- Larger data set helps!
- Throwing away useless hypotheses also helps!

Prevent overfitting

- Empirical loss and expected loss are different
 - Also called training error and test error
- Larger the hypothesis class, easier to find a hypothesis that fits the difference between the two
 - Thus has small training error but large test err
- Larger the data set, smaller the difference

Use prior knowledge/model to prune hypotheses

- Throwing away useless hypotheses also he Use experience/data to
- Larger data set helps!

prune hypotheses

Prior v.s. data

- Super strong prior knowledge: $\mathcal{H} = \{f^*\}$
- No data is needed!

- Super strong prior knowledge: $\mathcal{H} = \{f^*, f_1\}$
- A few data points suffices to detect *f**

- Super larger data set: infinite data
- Hypothesis class \mathcal{H} can be all functions!

• f^* : the best function

• Practical scenarios: finite data, \mathcal{H} of median capacity, f^* in/not in \mathcal{H}

• Practical scenarios lie between the two extreme cases

General Phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville

Cross validation

Model selection

- How to choose the optimal capacity?
 - e.g., choose the best degree for polynomial curve fitting
- Cannot be done by training data alone
- Create held-out data to approx. the test error
 - Called validation data set

Model selection: cross validation

- Partition the training data into several groups
- Each time use one group as validation set

Model selection: cross validation

- Also used for selecting other hyper-parameters for model/algorithm
 - E.g., learning rate, stopping criterion of SGD, etc.
- Pros: general, simple
- Cons: computationally expensive; even worse when there are more hyper-parameters