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Review: SVM objective



SVM: objective

o Lety; € {+1,—1}, f,, , (x) = w'x + b. Margin:

o yifw,b (xl)
Yy = mi
i [lwl
e Support Vector Machine:
: :Vifw,b (xl)

maxy = mdax min
w,b w,b i ||W||



SVM: optimization

e Optimization (Quadratic Programming):

1 2

min 51wl

b

yiwlx; +b) = 1,Vi

 Solved by Lagrange multiplier method:
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Lagrange multiplier



Lagrangian

* Consider optimization problem:
min f(w)
w
* Lagrangian:

Lw,B) = FOW)+ ) Bihu(w)

where [5;’s are called Lagrange multipliers



Lagrangian

* Consider optimization problem:
min f(w)
w

* Solved by setting derivatives of Lagrangian to 0
0L B 0L B

ow, 3B "




Generalized Lagrangian

* Consider optimization problem:
min f(w)
w
gw)<0,vVli<i<k

* Generalized Lagrangian:

Low, @ B) = fW)+ ) aigiw)+ ) fibw)
J

l

where «a;, [5;’s are called Lagrange multipliers



Generalized Lagrangian

* Consider the quantity:
Op(w) := max L(w,a,p)

a,f:a;=0
e Why?
8, (w) = {f(w), if w satisfies all the constraints
+00, if w does not satisfy the constraints

* So minimizing f(w) is the same as minimizing 6, (W)

m1n flw) = mln Op(w) = min max L(w,a,f)
w apf:a;=0



Lagrange duality

* The primal problem

p* = min f(w) = min max L(w,a,p)
w w apf:a;=0

* The dual problem
d*:= max minL(w,a, )

ap:ai=0 w

* Always true:

d* < p*



Lagrange duality

* The primal problem

p* == min f(w) = min max L(w,a,f)
w w apf:a;j=0

* The dual problem
d*:= max minL(w,a, )

af:a;=0 w

* Interesting case: when do we have
d* =p*?



Lagrange duality

* Theorem: under proper conditions, there exists (W*, a*, B*) such that

Moreover, (W™, a*, B*) satisfy Karush-Kuhn-Tucker (KKT) conditions:
0L

aWi
gi(w) <0, hj (w) =0, a; =0

=0, a;gi(w) =0



Lagrange duality

dual complementarity
* Theorem: under proper conditions, there exists

d'=L(w", a', B*) =1

Moreover, (W™, a*, B*) satisfy Karush-Kuhn-Tucker (KKT) conditions:

0L
aWi
gi(w) <0, h; (w) =0, a; = 0

= 0, a;gi(w) =0



Lagrange duality

conditions, there exists (

— L(W*, a*’ B*) — p*

primal constraints dual constraints

* Moreover, (w™, a*, B*) satisfy Karush-Kuhn-Tucker (KKT) conditions:
9,




Lagrange duality

 What are the proper conditions?

* A set of conditions (Slater conditions):
* [, gi convex, h; affine
e Exists w satisfying all g;(w) < 0

* There exist other sets of conditions
e Search Karush—Kuhn—Tucker conditions on Wikipedia



SVM: optimization



SVM: optimization

e Optimization (Quadratic Programming):

1 2

min 51wl

b

yiwlx; +b) = 1,Vi

* Generalized Lagrangian:
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SVM: optimization

e KKT conditions:

oL

—=02w= 2 a;yix; (1)

oL

5 =0,20=2;ay;  (2)
* Plug into L:

1
Lw,b,a) =2 a; — 7 a;a;y;yix; % (3)

combined with 0 = )., a;y;,; = 0



Only depend on inner products

SVM: optimization

* Reduces to dual problem:
1

L(W, b, a) — z a; — E a;d;) iij;TXj

l Lj

zaiyi o O,Cli >0

l

e Sincew = Y. a;y;x;, wehavew x + b =Y. a;y;xix + b



Kernel methods



Features
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Features

* Proper feature mapping can make non-linear to linear
» Using SVM on the feature space {¢(x;)}: only need ¢ (x;)" ¢ (x;)

* Conclusion: no need to design ¢ (), only need to design

k(x;,x1) = dp(x)Td(x)



Polynomial kernels

* Fix degree d and constant c:

k(x,x) = (xTx" + ¢)¢
* What are ¢p(x)?
* Expand the expression to get ¢ (x)



Polynomial kernels

vx,x' € R, K(x,x') = (212 + 222) +¢)° =

\/2_6331
\/2_65172

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar
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Figure 5.2 Illustration of the XOR classification problem and the use of poly-

nomial kernels. (a) XOR problem linearly non-separable in the input space. (b)

Linearly separable using second-degree polynomial kernel.

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



Gaussian kernels

* Fix bandwidth o
2
k(x,x") = exp(—|lx — x'||"/20?%)
 Also called radial basis function (RBF) kernels

* What are ¢ (x)? Consider the un-normalized version
k'(x,x") = exp(x’x'/o*?)

* Power series expansion: N

k'(x,x") =

l

(00) .
(xTx/)l

oli!




Mercer’s condition for kenerls

* Theorem: k(x, x") has expansiqrn

k(x,x") = 2 a;p;(x)p;(x")

l
if and only if for any function c(x),

[ [ c(x)c(xNk(x, x)dxdx' =0

(Omit some math conditions for k and c)



Constructing new kernels

* Kernels are closed under positive scaling, sum, product, pointwise
limit, and composition with a power series Y. a; k" (x, x")

* Example: k,(x,x"), k,(x, x") are kernels, then also is
k(x,x") = 2k{(x,x") + 3k, (x, x")

* Example: k,(x, x") is kernel, then also is

k(x,x") = exp(k;(x,x"))



Kernels v.s. Neural networks
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Features: part of the model

Nonlinear model
\
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Polynomial kernels

vx,x' € R, K(x,x') = (212 + 222) +¢)° =

\/2_6331
\/2_65172

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar




Polynomial kernel SVM as two layer neural network

y = sign(w' ¢ (x) + b)

First layer is fixed. If also learn first layer, it becomes two layer neural network



