

Machine Learning Basics Lecture 5: SVM II

Princeton University COS 495

Instructor: Yingyu Liang

Review: SVM objective

SVM: objective

• Let $y_i \in \{+1, -1\}$, $f_{w,b}(x) = w^T x + b$. Margin:

$$\gamma = \min_{i} \frac{y_i f_{w,b}(x_i)}{||w||}$$

• Support Vector Machine:

$$\max_{w,b} \gamma = \max_{w,b} \min_{i} \frac{y_i f_{w,b}(x_i)}{||w||}$$

• Optimization (Quadratic Programming):

 $\min_{w,b} \frac{1}{2} ||w||^2$ $y_i(w^T x_i + b) \ge 1, \forall i$

• Solved by Lagrange multiplier method:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_i \alpha_i [y_i(w^T x_i + b) - 1]$$

where α is the Lagrange multiplier

Lagrange multiplier

Lagrangian

• Consider optimization problem:

 $\min_{w} f(w)$ $h_i(w) = 0, \forall 1 \le i \le l$

• Lagrangian:

$$\mathcal{L}(w,\boldsymbol{\beta}) = f(w) + \sum_{i} \beta_{i} h_{i}(w)$$

where β_i 's are called Lagrange multipliers

Lagrangian

• Consider optimization problem:

 $w^{w} = 0, \forall 1 \le i \le l$

min f(w)

• Solved by setting derivatives of Lagrangian to 0

$$\frac{\partial \mathcal{L}}{\partial w_i} = 0; \quad \frac{\partial \mathcal{L}}{\partial \beta_i} = 0$$

Generalized Lagrangian

• Consider optimization problem:

 $\min_{w} f(w)$ $g_{i}(w) \leq 0, \forall 1 \leq i \leq k$ $h_{i}(w) = 0, \forall 1 \leq j \leq l$

• Generalized Lagrangian:

$$\mathcal{L}(w, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(w) + \sum_{i} \alpha_{i} g_{i}(w) + \sum_{j} \beta_{j} h_{j}(w)$$

where α_i , β_j 's are called Lagrange multipliers

Generalized Lagrangian

• Consider the quantity:

$$\theta_P(w) \coloneqq \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• Why?

 $\theta_P(w) = \begin{cases} f(w), & \text{if } w \text{ satisfies all the constraints} \\ +\infty, & \text{if } w \text{ does not satisfy the constraints} \end{cases}$

• So minimizing f(w) is the same as minimizing $\theta_P(w)$

 $\min_{w} f(w) = \min_{w} \theta_{P}(w) = \min_{w} \max_{\alpha, \beta: \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)$

• The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• The dual problem

 $d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$

• Always true:

$$d^* \leq p^*$$

• The primal problem

$$p^* \coloneqq \min_{w} f(w) = \min_{w} \max_{\alpha, \beta: \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta)$$

• The dual problem

$$d^* \coloneqq \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

• Interesting case: when do we have

$$d^* = p^*?$$

• Theorem: under proper conditions, there exists (w^*, α^*, β^*) such that

$$d^* = \mathcal{L}(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = p^*$$

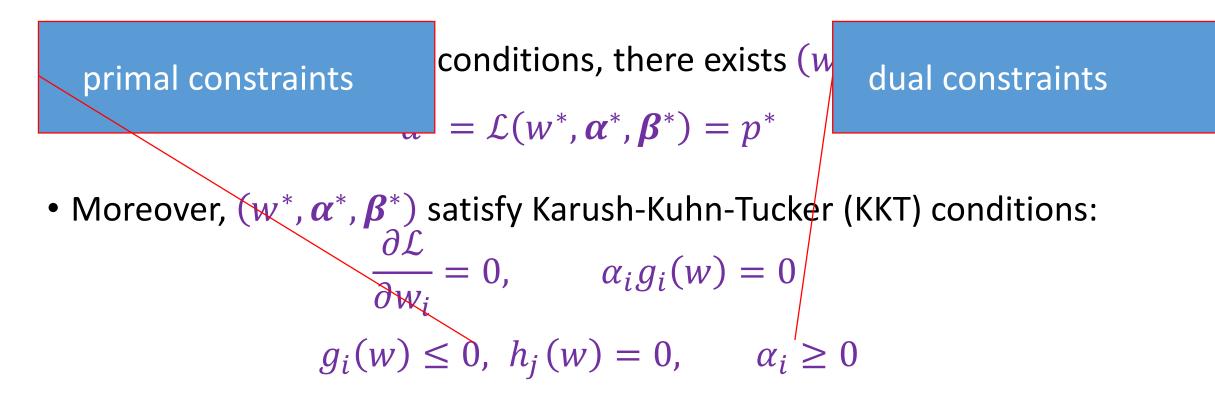
Moreover, $(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ satisfy Karush-Kuhn-Tucker (KKT) conditions: $\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$ $g_i(w) \le 0, \ h_j(w) = 0, \qquad \alpha_i \ge 0$

• Theorem: under proper conditions, there exists (w

$$d^* = \mathcal{L}(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = p^*$$

dual complementarity

Moreover, $(w^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$ satisfy Karush-Kuhn-Tucker (KKT) conditions: $\frac{\partial \mathcal{L}}{\partial w_i} = 0, \qquad \alpha_i g_i(w) = 0$ $g_i(w) \le 0, \ h_i(w) = 0, \qquad \alpha_i \ge 0$



- What are the proper conditions?
- A set of conditions (Slater conditions):
 - f, g_i convex, h_j affine
 - Exists w satisfying all $g_i(w) < 0$
- There exist other sets of conditions
 - Search Karush–Kuhn–Tucker conditions on Wikipedia

• Optimization (Quadratic Programming):

 $\min_{w,b} \frac{1}{2} ||w||^2$ $y_i(w^T x_i + b) \ge 1, \forall i$

• Generalized Lagrangian:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_i \alpha_i [y_i(w^T x_i + b) - 1]$$

where α is the Lagrange multiplier

• KKT conditions:

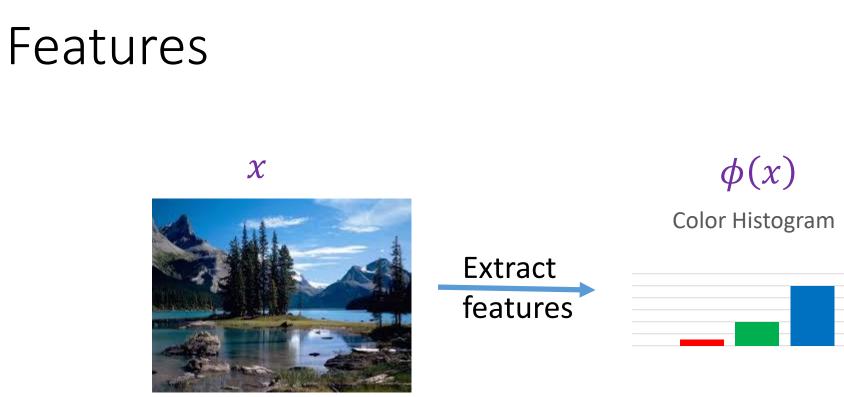
$$\frac{\partial \mathcal{L}}{\partial w} = 0, \Rightarrow w = \sum_{i} \alpha_{i} y_{i} x_{i} (1)$$
$$\frac{\partial \mathcal{L}}{\partial b} = 0, \Rightarrow 0 = \sum_{i} \alpha_{i} y_{i} (2)$$

• Plug into \mathcal{L} :

 $\mathcal{L}(w, b, \boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{ij} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$ (3) combined with $0 = \sum_{i} \alpha_{i} y_{i}, \alpha_{i} \ge 0$

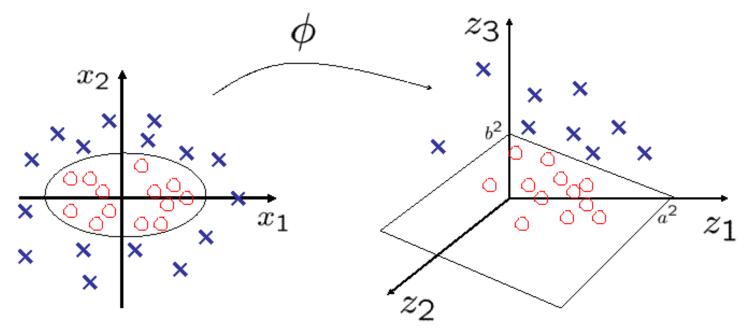
Only depend on inner products SVM: optimization • Reduces to dual problem: $\mathcal{L}(w, b, \boldsymbol{\alpha}) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0, \alpha_{i} \ge 0$ • Since $w = \sum_i \alpha_i y_i x_i$, we have $w^T x + b = \sum_i \alpha_i y_i x_i^T x + b$

Kernel methods



Red	Green	Blue
-----	-------	------

Features



$$\phi: (x_1, x_2) \longrightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$
$$\left(\frac{x_1}{a}\right)^2 + \left(\frac{x_2}{b}\right)^2 = 1 \longrightarrow \frac{z_1}{a^2} + \frac{z_3}{b^2} = 1$$

Features

- Proper feature mapping can make non-linear to linear
- Using SVM on the feature space $\{\phi(x_i)\}$: only need $\phi(x_i)^T \phi(x_j)$
- Conclusion: no need to design $\phi(\cdot)$, only need to design

 $k(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

Polynomial kernels

• Fix degree *d* and constant *c*:

$$k(x,x') = (x^T x' + c)^d$$

- What are $\phi(x)$?
- Expand the expression to get $\phi(x)$

Polynomial kernels

$$\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^2, \quad K(\mathbf{x}, \mathbf{x}') = (x_1 x_1' + x_2 x_2' + c)^2 = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2} x_1 x_2 \\ \sqrt{2c} x_1 \\ \sqrt{2c} x_2 \\ c \end{bmatrix} \cdot \begin{bmatrix} x_1'^2 \\ x_2'^2 \\ \sqrt{2} x_1' x_2' \\ \sqrt{2c} x_1' \\ \sqrt{2c} x_2' \\ c \end{bmatrix}$$

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar

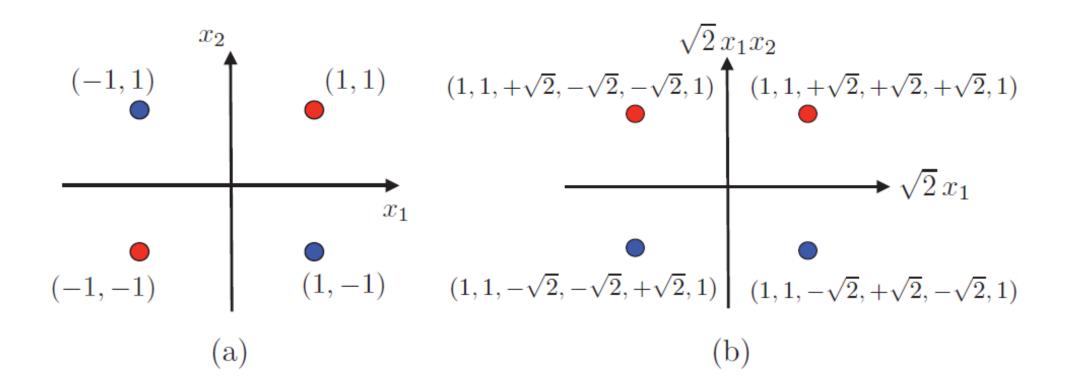


Figure 5.2 Illustration of the XOR classification problem and the use of polynomial kernels. (a) XOR problem linearly non-separable in the input space. (b) Linearly separable using second-degree polynomial kernel.

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar

Gaussian kernels

• Fix bandwidth σ :

$$k(x, x') = \exp(-||x - x'||^2/2\sigma^2)$$

- Also called radial basis function (RBF) kernels
- What are $\phi(x)$? Consider the un-normalized version $k'(x, x') = \exp(x^T x' / \sigma^2)$
- Power series expansion:

$$k'(x,x') = \sum_{i}^{+\infty} \frac{(x^T x')^i}{\sigma^i i!}$$

Mercer's condition for kenerls

• Theorem: k(x, x') has expansion $k(x, x') = \sum_{i}^{+\infty} a_i \phi_i(x) \phi_i(x')$

if and only if for any function c(x),

 $\int \int c(x)c(x')k(x,x')dxdx' \ge 0$

(Omit some math conditions for *k* and *c*)

Constructing new kernels

- Kernels are closed under positive scaling, sum, product, pointwise limit, and composition with a power series $\sum_{i}^{+\infty} a_i k^i(x, x')$
- Example: $k_1(x, x'), k_2(x, x')$ are kernels, then also is $k(x, x') = 2k_1(x, x') + 3k_2(x, x')$
- Example: $k_1(x, x')$ is kernel, then also is

 $k(x, x') = \exp(k_1(x, x'))$

Kernels v.s. Neural networks

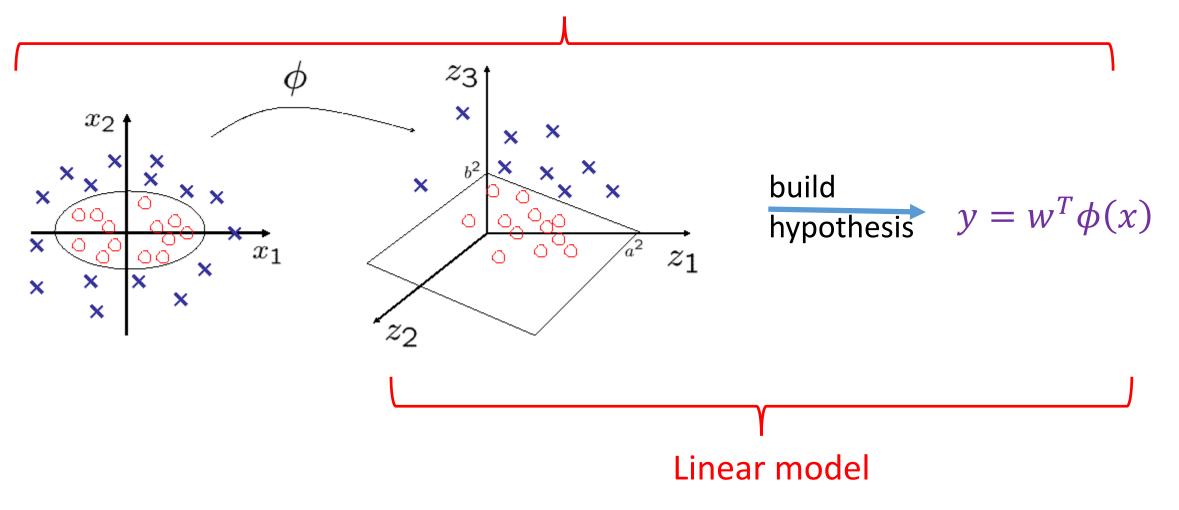
Features

 $\boldsymbol{\chi}$

	Color Histogram		
Extract		build	T (\sim
features		hypothesis	$y = w^T \phi(x)$
-			
	Red Green Blue		

Features: part of the model

Nonlinear model

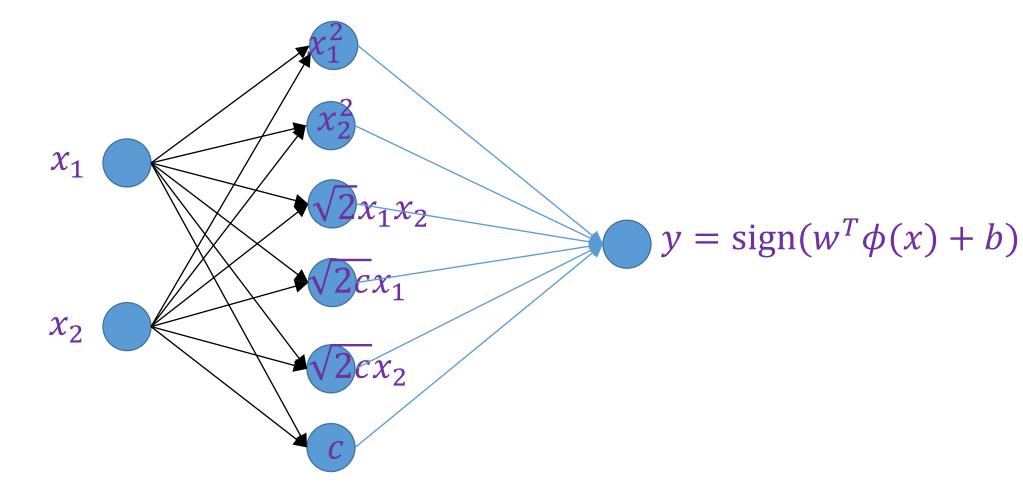


Polynomial kernels

$$\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^2, \quad K(\mathbf{x}, \mathbf{x}') = (x_1 x_1' + x_2 x_2' + c)^2 = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2} x_1 x_2 \\ \sqrt{2c} x_1 \\ \sqrt{2c} x_2 \\ c \end{bmatrix} \cdot \begin{bmatrix} x_1'^2 \\ x_2'^2 \\ \sqrt{2} x_1' x_2' \\ \sqrt{2c} x_1' \\ \sqrt{2c} x_2' \\ c \end{bmatrix}$$

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar

Polynomial kernel SVM as two layer neural network



First layer is fixed. If also learn first layer, it becomes two layer neural network