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Review: SVM objective



SVM: objective

• Let 𝑦𝑖 ∈ +1,−1 , 𝑓𝑤,𝑏 𝑥 = 𝑤𝑇𝑥 + 𝑏. Margin:

𝛾 = min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |

• Support Vector Machine: 

max
𝑤,𝑏

𝛾 = max
𝑤,𝑏

min
𝑖

𝑦𝑖𝑓𝑤,𝑏 𝑥𝑖
| 𝑤 |



SVM: optimization

• Optimization (Quadratic Programming):

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

• Solved by Lagrange multiplier method:

ℒ 𝑤, 𝑏, 𝜶 =
1

2
𝑤

2

−෍

𝑖

𝛼𝑖[𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1]

where 𝜶 is the Lagrange multiplier



Lagrange multiplier



Lagrangian

• Consider optimization problem:
min
𝑤

𝑓(𝑤)

ℎ𝑖 𝑤 = 0, ∀1 ≤ 𝑖 ≤ 𝑙

• Lagrangian:

ℒ 𝑤, 𝜷 = 𝑓 𝑤 +෍

𝑖

𝛽𝑖ℎ𝑖(𝑤)

where 𝛽𝑖’s are called Lagrange multipliers



Lagrangian

• Consider optimization problem:
min
𝑤

𝑓(𝑤)

ℎ𝑖 𝑤 = 0, ∀1 ≤ 𝑖 ≤ 𝑙

• Solved by setting derivatives of Lagrangian to 0

𝜕ℒ

𝜕𝑤𝑖
= 0;

𝜕ℒ

𝜕𝛽𝑖
= 0



Generalized Lagrangian

• Consider optimization problem:
min
𝑤

𝑓(𝑤)

𝑔𝑖 𝑤 ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

ℎ𝑗 𝑤 = 0, ∀1 ≤ 𝑗 ≤ 𝑙

• Generalized Lagrangian:

ℒ 𝑤, 𝜶, 𝜷 = 𝑓 𝑤 +෍

𝑖

𝛼𝑖𝑔𝑖(𝑤) +෍

𝑗

𝛽𝑗ℎ𝑗(𝑤)

where 𝛼𝑖 , 𝛽𝑗’s are called Lagrange multipliers



Generalized Lagrangian

• Consider the quantity:

𝜃𝑃 𝑤 ≔ max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤, 𝜶, 𝜷

• Why?

𝜃𝑃 𝑤 = ቊ
𝑓 𝑤 , if 𝑤 satisfies all the constraints
+∞, if 𝑤 does not satisfy the constraints

• So minimizing 𝑓 𝑤 is the same as minimizing 𝜃𝑃 𝑤

min
𝑤

𝑓 𝑤 = min
𝑤

𝜃𝑃 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤,𝜶, 𝜷



Lagrange duality

• The primal problem

𝑝∗ ≔ min
𝑤

𝑓 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤, 𝜶, 𝜷

• The dual problem

𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤, 𝜶, 𝜷

• Always true:
𝑑∗ ≤ 𝑝∗



Lagrange duality

• The primal problem

𝑝∗ ≔ min
𝑤

𝑓 𝑤 = min
𝑤

max
𝜶,𝜷:𝛼𝑖≥0

ℒ 𝑤, 𝜶, 𝜷

• The dual problem

𝑑∗ ≔ max
𝜶,𝜷:𝛼𝑖≥0

min
𝑤

ℒ 𝑤, 𝜶, 𝜷

• Interesting case: when do we have 
𝑑∗ = 𝑝∗?



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗ such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) conditions:
𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗ such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) conditions:
𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0

dual complementarity



Lagrange duality

• Theorem: under proper conditions, there exists 𝑤∗, 𝜶∗, 𝜷∗ such that

𝑑∗ = ℒ 𝑤∗, 𝜶∗, 𝜷∗ = 𝑝∗

• Moreover, 𝑤∗, 𝜶∗, 𝜷∗ satisfy Karush-Kuhn-Tucker (KKT) conditions:
𝜕ℒ

𝜕𝑤𝑖
= 0, 𝛼𝑖𝑔𝑖 𝑤 = 0

𝑔𝑖 𝑤 ≤ 0, ℎ𝑗 𝑤 = 0, 𝛼𝑖 ≥ 0

dual constraintsprimal constraints



Lagrange duality

• What are the proper conditions? 

• A set of conditions (Slater conditions):
• 𝑓, 𝑔𝑖 convex, ℎ𝑗 affine

• Exists 𝑤 satisfying all 𝑔𝑖 𝑤 < 0

• There exist other sets of conditions
• Search Karush–Kuhn–Tucker conditions on Wikipedia



SVM: optimization



SVM: optimization

• Optimization (Quadratic Programming):

min
𝑤,𝑏

1

2
𝑤

2

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1, ∀𝑖

• Generalized Lagrangian:

ℒ 𝑤, 𝑏, 𝜶 =
1

2
𝑤

2

−෍

𝑖

𝛼𝑖[𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 − 1]

where 𝜶 is the Lagrange multiplier



SVM: optimization

• KKT conditions:
𝜕ℒ

𝜕𝑤
= 0, 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖 (1)

𝜕ℒ

𝜕𝑏
= 0, 0 = σ𝑖 𝛼𝑖𝑦𝑖 (2)

• Plug into ℒ:

ℒ 𝑤, 𝑏, 𝜶 = σ𝑖 𝛼𝑖 −
1

2
σ𝑖𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗 (3)

combined with 0 = σ𝑖 𝛼𝑖𝑦𝑖 , 𝛼𝑖 ≥ 0



SVM: optimization

• Reduces to dual problem:

ℒ 𝑤, 𝑏, 𝜶 = ෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

෍

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

• Since 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖, we have 𝑤𝑇𝑥 + 𝑏 = σ𝑖 𝛼𝑖𝑦𝑖𝑥𝑖
𝑇𝑥 + 𝑏

Only depend on inner products



Kernel methods



Features

Color Histogram

Red Green Blue

Extract 
features

𝑥 𝜙 𝑥



Features



Features

• Proper feature mapping can make non-linear to linear

• Using SVM on the feature space {𝜙 𝑥𝑖 }: only need 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)

• Conclusion: no need to design 𝜙 ⋅ , only need to design 

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇𝜙(𝑥𝑗)



Polynomial kernels

• Fix degree 𝑑 and constant 𝑐:
𝑘 𝑥, 𝑥′ = 𝑥𝑇𝑥′ + 𝑐 𝑑

• What are 𝜙(𝑥)?

• Expand the expression to get 𝜙(𝑥)



Polynomial kernels

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



Gaussian kernels 

• Fix bandwidth 𝜎:

𝑘 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥′
2
/2𝜎2)

• Also called radial basis function (RBF) kernels

• What are 𝜙(𝑥)? Consider the un-normalized version
𝑘′ 𝑥, 𝑥′ = exp(𝑥𝑇𝑥′/𝜎2)

• Power series expansion: 

𝑘′ 𝑥, 𝑥′ = ෍

𝑖

+∞
𝑥𝑇𝑥′ 𝑖

𝜎𝑖𝑖!



Mercer’s condition for kenerls

• Theorem: 𝑘 𝑥, 𝑥′ has expansion 

𝑘 𝑥, 𝑥′ = ෍

𝑖

+∞

𝑎𝑖𝜙𝑖 𝑥 𝜙𝑖(𝑥
′)

if and only if for any function 𝑐(𝑥),

∫ ∫ 𝑐 𝑥 𝑐 𝑥′ 𝑘 𝑥, 𝑥′ 𝑑𝑥𝑑𝑥′ ≥ 0

(Omit some math conditions for 𝑘 and 𝑐)



Constructing new kernels

• Kernels are closed under positive scaling, sum, product, pointwise 
limit, and composition with a power series σ𝑖

+∞𝑎𝑖𝑘
𝑖(𝑥, 𝑥′)

• Example: 𝑘1 𝑥, 𝑥′ , 𝑘2 𝑥, 𝑥′ are kernels, then also is

𝑘 𝑥, 𝑥′ = 2𝑘1 𝑥, 𝑥′ + 3𝑘2 𝑥, 𝑥′

• Example: 𝑘1 𝑥, 𝑥′ is kernel, then also is

𝑘 𝑥, 𝑥′ = exp(𝑘1 𝑥, 𝑥′ )



Kernels v.s. Neural networks



Features

Color Histogram
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features

𝑥

𝑦 = 𝑤𝑇𝜙 𝑥
build 
hypothesis



Features: part of the model

𝑦 = 𝑤𝑇𝜙 𝑥
build 
hypothesis

Linear model

Nonlinear model



Polynomial kernels

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar



Polynomial kernel SVM as two layer neural network

𝑥1

𝑥2

𝑥1
2

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2

𝑐

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)

First layer is fixed. If also learn first layer, it becomes two layer neural network


