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Review: machine learning basics



Math formulation

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Find y = f(x) € # that minimizes L(f) = % i—1 L(f, xi, i)
* s.t. the expected loss is small

L(f) — IE':(x,y)~D L%, y)]



Machine learning 1-2-3

* Collect data and extract features
* Build model: choose hypothesis class H and loss function [
* Optimization: minimize the empirical loss



Loss function

* [, loss: linear regression
* Cross-entropy: logistic regression
* Hinge loss: Perceptron

e General principle: maximum likelihood estimation (MLE)
* [, loss: corresponds to Normal distribution
* logistic regression: corresponds to sigmoid conditional distribution



Optimization

* Linear regression: closed form solution
* Logistic regression: gradient descent
* Perceptron: stochastic gradient descent

* General principle: local improvement
* SGD: Perceptron; can also be applied to linear regression/logistic regression



Principle for hypothesis class?

* Yes, there exists a general principle (at least philosophically)

» Different names/faces/connections
* Occam’s razor
e VC dimension theory
* Minimum description length
* Tradeoff between Bias and variance; uniform convergence
* The curse of dimensionality

* Running example: Support Vector Machine (SVM)



Motivation



Linear classification (W 'x = 0
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Assume perfect separation between the two classes



Attempt

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D

* Hypothesis y = sign(f,,(x)) = sign(w’x)
cy=+1ifwlx >0
cy=—1ifwlx <0

* Let’s assume that we can optimize to find w



Multiple optimal solutions?

Class +1

Class -1

Same on empirical loss;
Different on test/expected loss



What about w, ?
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What about wy?
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Most confident: w,

Class +1



Intuition: margin

Class +1



Margin



Margin

| fw (X))

|lwl|

* Lemma 1: x has distance to the hyperplane f,,(x) = wlx = 0

Proof:
* w is orthogonal to the hyperplane

* The unit direction is —
llwl|
w\
* The projection of x is ( ) X ==
llwl| [ lwl]|




Margin: with bias

* Claim 1: w is orthogonal to the hyperplane f,, , (x) = wlix+b=0
Proof:

* pick any x; and x, on the hyperplane

. WTX1 +b=0

cwlx, +b =0

*Sow!(x; —x,) =0



Margin: with bias

e Claim 2: 0 has distance — to the hyperplane w’x + b = 0

IIWII

Proof:
* pick any x; the hyperplane

* Project x; to the unit direction — to get the distance

IIWII
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Margin: with bias

* Lemma 2: x has distance lf‘ﬁfflr)l to the hyperplane f,, ,(x) = wlx +
b=0
Proof:

*letx =x, + rﬁ, then || is the distance

 Multiply both sides by w! and add b

* Left hand side: w'x + b = f,, ,(x)

T

w"w

e Right hand side: w'x, +r +b=0+r|w||

[lwl|



y >0 L2
y =0

y <0 The notation here is:

y(x) = whx + w,

Figure from Pattern Recognition
and Machine Learning, Bishop



Support Vector Machine (SVM)



SVM: objective

* Margin over all training data points:

* If f,, , incorrect on some x;, the margin is negative



SVM: objective

* Maximize margin over all training data points:

C Yifwp(x1) . yiw'x; + b)

maxy = madax min = IMmax min
w,b w,b L ||W|| w,b L ||W||

* A bit complicated ...



SVM: simplified objective
* Observation: when (w, b) scaled by a factor ¢, the margin unchanged

yi(ew'x; +¢cb)  yi(w'x; + b)
llewl| [lw]|

e Let’s consider a fixed scale such that

yirW'x +b) =1
where x;+« is the point closest to the hyperplane



SVM: simplified objective

e Let’s consider a fixed scale such that

yirW'x +b) =1
where x;+« is the point closet to the hyperplane
* Now we have for all data
y:(wlx; +b) > 1

and at least for one i the equality holds

1

* Then the margin is —
[ lwl]



SVM: simplified objective

e Optimization simplified to
min 1HWI‘Z
wb 2

yiwlx; + b) = 1,Vi

* How to find the optimum w™?



SVM: principle for hypothesis class



Thought experiment

e Suppose pick an R, and suppose can decide if exists w satisfying

%HWHZSR

yiwlx; + b) > 1,Vi

e Decrease R until cannot find w satisfying the inequalities



Thought experiment

* W™ is the best weight (i.e., satisfying the smallest R)




Thought experiment

* W™ is the best weight (i.e., satisfying the smallest R)




Thought experiment

* W™ is the best weight (i.e., satisfying the smallest R)
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Thought experiment

* W™ is the best weight (i.e., satisfying the smallest R)
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Thought experiment

* W™ is the best weight (i.e., satisfying the smallest R)
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Thought experiment

* To handle the difference between empirical and expected losses 2

* Choose large margin hypothesis (high confidence) 2
* Choose a small hypothesis class

-




Thought experiment

* Principle: use smallest hypothesis class still with a correct/good one
* Also true beyond SVM
* Also true for the case without perfect separation between the two classes
* Math formulation: VC-dim theory, etc.

A\ Xk

4%




Thought experiment

* Principle: use smallest hypothesis class still with a correct/good one
* Whatever you know about the ground truth, add it as constraint/regularizer




SVM: optimization

e Optimization (Quadratic Programming):

1 2

min 51wl

b

yiwlx; +b) = 1,Vi

 Solved by Lagrange multiplier method:

1
,C(W, b, a) :E‘

where a is the Lagrange mu
* Details in next lecture
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Reading

* Review Lagrange multiplier method

* E.g. Section 5 in Andrew Ng’s note on SVM

* posted on the course website:
http://www.cs.princeton.edu/courses/archive/springl16/cos495/



