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Review: machine learning basics



Math formulation

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Find y = f(x) € # that minimizes L(f) = % i—1 L(f, xi, i)
* s.t. the expected loss is small

L(f) — IE':(x,y)~D L%, y)]



Machine learning 1-2-3

* Collect data and extract features
* Build model: choose hypothesis class H and loss function [
e Optimization: minimize the empirical loss



Machine learning 1-2-3

e Collect data and extract features

* Build model: choose hypothesis class H and loss function [

e Optimization: minimize the em




Example: Linear regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Find f,(x) = w’x that minimizes L(f,, =% e (whx — y;)?




Why [, loss

* Why not choose another loss
* [, loss, hinge loss, exponential loss, ...

 Empirical: easy to optimize
e Forlinearcase:w = (XTX)"1XTy

* Theoretical: a way to encode prior knowledge

Questions:
* What kind of prior knowledge?
* Principal way to derive loss?



Maximum likelihood Estimation



Maximum likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* Would like to pick 8 so that Py (x, y) fits the data well



Maximum likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* “fitness” of 6 to one data point (x;, y;)
likelihood(8; x;,v;) = Pg(x;,V;)



Maximum likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* “fitness” of 0 to i.i.d. data points {(x;, y;)}
likelihood(6; {x;, ;}) = Po({x;,¥:}) = I1; Po(xi, ¥;)



Maximum likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* MLE: maximize “fitness” of 0 to i.i.d. data points {(x;, y;)}

Oy = argmaxgeg [ I; Po (xi, ¥i)



Maximum likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* MLE: maximize “fitness” of 0 to i.i.d. data points {(x;, y;)}

0y = argmaxgeg log[l]; Po(xi, ;i)

Om1 = argmaxgee 2;108[Po(xi, Vi)



Maximum likelihood Estimation (MLE)

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(x,v): 0 € O} be a family of distributions indexed by 6

* MLE: negative log-likelihood loss
Oy = argmaxgee 2ilog(Po(x;, ;)

[(Pg,x;,y;) = —log(Pg(xy,¥:))
L(Pg) = — X;log(Pg(x;, 1))



MLE: conditional log-likelihood

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
e Let {Py(v|x): 6 € O} be a family of distributions indexed by 6

Oy = argmaxgeg 2.;108(Py (vilx:)

[(Pg,x;,y;) = — log(Pg(y;i]x;))
L(Pg) = — X;1og(Po (yi]x:))



MLE: conditional log-likelihood

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
e Let {Py(v|x): 6 € O} be a family of distributions indexed by 6

Oy = argmaxgeg 2.;108(Py (vilx:)

[(Pg,x;,y;) = — log(Pg(y;i]x;))
L(Pg) = — X;1og(Po (yi]x:))



Example: [, loss

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
. L= 1
* Find f5 () that minimizes L(fg) = — XL, (fp (x;) — y;)?



Example: [, loss

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
. L 1
* Find fg (x) that minimizes L(fp) = — XL (fp (x;) — yi)?

* Define Py (y|x) = Normal(y; fo(x),0%)
* log(Pg (yilxi)) = 202 5 (fa(x) — yi)?—log(c) — ‘108(27T)

* Oy, = argmingeo ~ Xk, (fo () — ;)



Linear classification



Example 1: image classification

Indoor outdoor



Example 2: Spam detection

——mm_

Email 1
Email 2 0 1 0 No
Email 3 1 1 1 Yes
Email n



Why classification

* Classification: a kind of summary
* Easy to interpret
* Easy for making decisions



Linear classification wTx = 0

wlix >0

wlix <0
Class 1 ¢
O
O
= O Class O




Linear classification: natural attempt

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Hypothesis f;, (x) = w’x
cy=1ifwix>0
cy=0ifwlx <0

e Prediction: y = step(f;,(x)) = step(w’x)



Linear classification: natural attempt

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Find f;, (x) = w”x to minimize L(f,,) = %2‘1:1 I[step(w!x;) # v;]

* Drawback: difficult to optimize
* NP-hard in the worst case




Linear classification: simple approach

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

* Find f,(x) = w”x that minimizes L(f,,) = %Z}Ll(WTxi — ¥i)*




Linear classification: simple approach

4

4

Figure borrowed from
Pattern Recognition and
87 ' 87 1 Machine Learning, Bishop

-4 -2 0 2 - 6 8 -4 -2 0 2 4 6 8

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.



Compare the two

w" X

y = step(w!x)

w

X



Between the two

* Prediction bounded in [0,1] |
* Smooth

1
1+exp(—a) 0.5

 Sigmoid: o(a) =

0

-5 0 5

Figure borrowed from Pattern Recognition and Machine Learning, Bishop



Linear classification: sigmoid prediction

e Squash the output of the linear function
1

1+ exp(—wlx)

Sigmoid(w'x) = a(wlx) =

* Find w that minimizes L(f,,) = %Z?zl(a(wai) — y;)*



Linear classification: logistic regression

e Squash the output of the linear function
1

1+ exp(—wlx)
* A better approach: Interpret as a probability

Py(y=1lx) =cw'x) =

Sigmoid(w'x) = a(wlx) =

1
1+ exp(—wlx)

P,(y=0|x)=1-P,(y =1x) =1—-0c(w"x)



Linear classification: logistic regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Find w that minimizes

S

1 n
Lw) = —— ) log R, (y1)

i=1

. 1 1

Liw) = —— z logo(w!x;) — — Z log[1 — a(w’x))]
nyizl nyi=0




Linear classification: logistic regression

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Find w that minimizes

. 1 1
Liw) = —— 2 logo(w!x;) — — 2 log[1 — o(wlx;)]
nyi=1 n)/i=0




Properties of sigmoid function

* Bounded
1
= e (0,1
o(a) 1+ exp(—a) (01
* Symmetric
exp(—a)
1 - — — — —
o(a) 1+ exp(—a) exp(a)+1 o(-a)

* Gradient

exp(—a)
(1 + exp(—a))?

o'(a) =

=0(a)(1—o(a))



