Machine Learning Basics
Lecture 1: Linear Regression

Princeton University COS 495
Instructor: Yingyu Liang
Machine learning basics
What is machine learning?

• “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, improves with experience E.”

Example 1: image classification

Task: determine if the image is indoor or outdoor
Performance measure: probability of misclassification
Example 1: image classification

Experience/Data:
images with labels

Indoor

outdoor
Example 1: image classification

• A few terminologies
 • Training data: the images given for learning
 • Test data: the images to be classified
 • Binary classification: classify into two classes
Example 1: image classification (multi-class)

ImageNet figure borrowed from vision.stanford.edu
Example 2: clustering images

Task: partition the images into 2 groups
Performance: similarities within groups
Data: a set of images
Example 2: clustering images

• A few terminologies
 • Unlabeled data vs labeled data
 • Supervised learning vs unsupervised learning
Math formulation

Feature vector: x_i

Label: y_i

Indoor

Extract features

Color Histogram
Math formulation

Extract features

outdoor

Feature vector: x_j

Label: y_j

Color Histogram

- Red
- Green
- Blue

1
Math formulation

• Given training data \{(x_i, y_i): 1 \leq i \leq n\}
• Find \(y = f(x) \) using training data
• s.t. \(f \) correct on test data

What kind of functions?
Math formulation

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \)
- Find \(y = f(x) \in \mathcal{H} \) using training data
- s.t. \(f \) correct on test data
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\)
• Find \(y = f(x) \in \mathcal{H}\) using training data
• s.t. \(f\) correct on test data
Math formulation

• Given training data \((x_i, y_i): 1 \leq i \leq n \) i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. \(f \) correct on test data i.i.d. from distribution \(D \)

They have the same distribution

i.i.d.: independently identically distributed
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. \(f \) correct on test data i.i.d. from distribution \(D \)

What kind of performance measure?
Math formulation

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
- Find \(y = f(x) \in \mathcal{H} \) using training data
- s.t. the expected loss is small

\[
L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
\]

Various loss functions
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
• Find \(y = f(x) \in \mathcal{H}\) using training data
• s.t. the expected loss is small

\[
L(f) = \mathbb{E}_{(x,y) \sim D}[l(f, x, y)]
\]

• Examples of loss functions:
 • 0-1 loss: \(l(f, x, y) = \mathbb{I}[f(x) \neq y]\) and \(L(f) = \Pr[f(x) \neq y]\)
 • \(l_2\) loss: \(l(f, x, y) = [f(x) - y]^2\) and \(L(f) = \mathbb{E}[f(x) - y]^2\)
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
• Find \(y = f(x) \in \mathcal{H}\) using training data
• s.t. the expected loss is small
 \[L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)] \]
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) that minimizes \(\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i) \)
• s.t. the expected loss is small

\[
L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
\]
Machine learning 1-2-3

• Collect data and extract features
• Build model: choose hypothesis class \mathcal{H} and loss function l
• Optimization: minimize the empirical loss
Wait...

• Why handcraft the feature vectors x, y?
 • Can use prior knowledge to design suitable features

• Can computer learn the features on the raw images?
 • Learn features directly on the raw images: Representation Learning
 • Deep Learning ⊆ Representation Learning ⊆ Machine Learning ⊆ Artificial Intelligence
Wait...

- Does MachineLearning-1-2-3 include all approaches?
 - Include many but not all
 - Our current focus will be MachineLearning-1-2-3
Example: Stock Market Prediction

Stock Market (Disclaimer: synthetic data/in another parallel universe)

Sliding window over time: serve as input x; non-i.i.d.
Linear regression
Real data: Prostate Cancer by Stamey et al. (1989)

Figure borrowed from *The Elements of Statistical Learning*

\[y: \text{prostate specific antigen} \]

\[(x_1, \ldots, x_8): \text{clinical measures} \]
Linear regression

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
- Find \(f_w(x) = w^T x \) that minimizes \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \)

Hypothesis class \(\mathcal{H} \)

\(l_2 \) loss; also called mean square error
Linear regression: optimization

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)

• Find \(f_w(x) = w^T x \) that minimizes \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n}(w^T x_i - y_i)^2 \)

• Let \(X \) be a matrix whose \(i \)-th row is \(x_i^T \), \(y \) be the vector \((y_1, \ldots, y_n)^T \)

\[
\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n}(w^T x_i - y_i)^2 = \frac{1}{n} \|Xw - y\|_2^2
\]
Linear regression: optimization

Set the gradient to 0 to get the minimizer

$$\nabla_w \hat{L}(f_w) = \nabla_w \frac{1}{n} \|Xw - y\|_2^2 = 0$$

$$\nabla_w [(Xw - y)^T(Xw - y)] = 0$$

$$\nabla_w [w^TX^TXw - 2w^TX^Ty + y^Ty] = 0$$

$$2X^TXw - 2X^Ty = 0$$

$$w = (X^TX)^{-1}X^Ty$$
Linear regression: optimization

• Algebraic view of the minimizer
 • If X is invertible, just solve $Xw = y$ and get $w = X^{-1}y$
 • But typically X is a tall matrix

\[
Xw = y \\
X^T X w = X^T y \\
\text{Normal equation: } w = (X^T X)^{-1}X^T y
\]
Linear regression with bias

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
• Find \(f_{w,b}(x) = w^T x + b\) to minimize the loss

• Reduce to the case without bias:
 • Let \(w' = [w; b], x' = [x; 1]\)
 • Then \(f_{w,b}(x) = w^T x + b = (w')^T (x')\)