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Introduction



Recurrent neural networks

• Dates back to (Rumelhart et al., 1986) 

• A family of neural networks for handling sequential data, which 
involves variable length inputs or outputs

• Especially, for natural language processing (NLP)



Sequential data 

• Each data point: A sequence of vectors 𝑥(𝑡), for 1 ≤ 𝑡 ≤ 𝜏

• Batch data: many sequences with different lengths 𝜏

• Label: can be a scalar, a vector, or even a sequence 

• Example
• Sentiment analysis

• Machine translation



Example: machine translation

Figure from: devblogs.nvidia.com



More complicated sequential data 

• Data point: two dimensional sequences like images

• Label: different type of sequences like text sentences

• Example: image captioning



Image captioning

Figure from the paper “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, 
by Justin Johnson, Andrej Karpathy, Li Fei-Fei



Computational graphs



A typical dynamic system 

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 ; 𝜃)

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



A system driven by external data

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Compact view

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Compact view

𝑠(𝑡+1) = 𝑓(𝑠 𝑡 , 𝑥(𝑡+1); 𝜃)

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Key: the same 𝑓 and 𝜃
for all time steps 

square: one step time delay



Recurrent neural networks (RNN)



Recurrent neural networks

• Use the same computational function and parameters across different 
time steps of the sequence

• Each time step: takes the input entry and the previous hidden state to 
compute the output entry

• Loss: typically computed every time step



Recurrent neural networks

Figure from Deep Learning, by Goodfellow, Bengio and Courville
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Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Math formula:



Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity and 
good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can be 
processed by in the same way at different time step (e.g., NLP)



Advantage

• Hidden state: a lossy summary of the past

• Shared functions and parameters: greatly reduce the capacity and 
good for generalization in learning

• Explicitly use the prior knowledge that the sequential data can be 
processed by in the same way at different time step (e.g., NLP)

• Yet still powerful (actually universal): any function computable by a 
Turing machine can be computed by such a recurrent network of a 
finite size (see, e.g., Siegelmann and Sontag (1995))



Training RNN

• Principle: unfold the computational graph, and use backpropagation

• Called back-propagation through time (BPTT) algorithm

• Can then apply any general-purpose gradient-based techniques



Training RNN

• Principle: unfold the computational graph, and use backpropagation

• Called back-propagation through time (BPTT) algorithm

• Can then apply any general-purpose gradient-based techniques

• Conceptually: first compute the gradients of the internal nodes, then 
compute the gradients of the parameters



Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Math formula:



Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Gradient at 𝐿(𝑡): (total loss 
is sum of those at different
time steps)



Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Gradient at 𝑜(𝑡):



Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Gradient at 𝑠(𝜏):



Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Gradient at 𝑠(𝑡):



Recurrent neural networks

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Gradient at parameter 𝑉:



Variants of RNN



RNN

• Use the same computational function and parameters across different 
time steps of the sequence

• Each time step: takes the input entry and the previous hidden state to 
compute the output entry

• Loss: typically computed every time step

• Many variants
• Information about the past can be in many other forms

• Only output at the end of the sequence 



Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Example: use the output at the 
previous step



Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Example: only output at the end



Bidirectional RNNs

• Many applications: output at time 𝑡 may depend on the whole input 
sequence

• Example in speech recognition: correct interpretation of the current 
sound may depend on the next few phonemes, potentially even  the 
next few words

• Bidirectional RNNs are introduced to address this



BiRNNs

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Encoder-decoder RNNs

• RNNs: can map sequence to one vector; or to sequence of same 
length

• What about mapping sequence to sequence of different length?

• Example: speech recognition, machine translation, question 
answering, etc



Figure from Deep Learning, 
Goodfellow, Bengio and Courville


