Deep Learning Basics
Lecture 8: Autoencoder & DBM

Princeton University COS 495

Instructor: Yingyu Liang




Autoencoder



Autoencoder

* Neural networks trained to attempt to copy its input to its output

* Contain two parts:
* Encoder: map the input to a hidden representation
* Decoder: map the hidden representation to the output



Autoencoder

Hidden representation (the code)

Input Reconstruction



Autoencoder

Encoder f () Decoder g(-)

h=fx),r=gh)=g{kx)



Why want to copy input to output

* Not really care about copying

* Interesting case: NOT able to copy exactly but strive to do so

e Autoencoder forced to select which aspects to preserve and thus
hopefully can learn useful properties of the data

* Historical note: goes back to (LeCun, 1987; Bourlard and Kamp, 1988;
Hinton and Zemel, 1994).



Undercomplete autoencoder

* Constrain the code to have smaller dimension than the input
* Training: minimize a loss function

L(x,7) = L(x,g(f(x)))




Undercomplete autoencoder

* Constrain the code to have smaller dimension than the input
* Training: minimize a loss function

L(x,7) = L(x, g(f(x)))

* Special case: [, g linear, L mean square error
e Reduces to Principal Component Analysis



Undercomplete autoencoder

e What about nonlinear encoder and decoder?

e Capacity should not be too large

* Suppose given data x4, x5, ..., X,
* Encoder maps x; to i
* Decoder maps i to x;

* One dim h suffices for perfect reconstruction



Regularization

e Typically NOT

* Keeping the encoder/decoder shallow or
* Using small code size

* Regularized autoencoders: add regularization term that encourages
the model to have other properties
e Sparsity of the representation (sparse autoencoder)
e Robustness to noise or to missing inputs (denoising autoencoder)
* Smallness of the derivative of the representation



Sparse autoencoder

* Constrain the code to have sparsity
* Training: minimize a loss function

Lg = L(x, g(f(x))) + R(h)

=
HE N
=




Probabilistic view of regularizing h

* Suppose we have a probabilistic model p(h, x)
* MLE on x

logp(x) = log ) p(k',x)
hl

e ® Hard to sum over h’



Probabilistic view of regularizing h

* Suppose we have a probabilistic model p(h, x)
* MLE on x

max log p(x) = maxlogz p(h', x)
hl

* Approximation: suppose h = f(x) gives the most likely hidden
representation, and ., p(h', x) can be approximated by p(h, x)



Probabilistic view of regularizing h

* Suppose we have a probabilistic model p(h, x)
* Approximate MLE on x, h = f(x)
max logp(h,x) = max logp(x|h) + logp(h)

Loss

Regularization



Sparse autoencoder

* Constrain the code to have sparsity

e Laplacian prior: p(h) = %exp(—%lhll)

* Training: minimize a loss function

Lg = L(x, g(f(x))) + Alhl;



Denoising autoencoder
* Traditional autoencoder: encourage to learn g(f(-)) to be identity

e Denoising : minimize a loss function

L(x,7) = L(x, g(f(®))

where X is x + noise



Boltzmann machine



Boltzmann machine

* Introduced by Ackley et al. (1985)

* General “connectionist” approach to learning arbitrary probability
distributions over binary vectors

exp(—E(x))
Z

* Special case of energy model: p(x) =



Boltzmann machine

* Energy model:

b (x) = eXP(—ZE(X))

* Boltzmann machine: special case of energy model with
E(x) = —x"Ux —b'x

where U is the weight matrix and b is the bias parameter




Boltzmann machine with latent variables

e Some variables are not observed
x = (x,,xp), x,, visible, x; hidden

E(x) = —xTRx, — xIWx;, — x}Sx, — bTx, — cTxy,

e Universal approximator of probability mass functions



Maximum likelihood

* Suppose we are given data X = (x}, x2, ..., x)
e Maximum likelihood is to maximize

log p(X) = z log p(x5)

where

1
p() = ) pltyxn) = ) exp(=E(tp, 1))

Xh

« 7 = ), exp(—E(x,, xp)): partition function, difficult to compute



Restricted Boltzmann machine

* Invented under the name harmonium (Smolensky, 1986)

* Popularized by Hinton and collaborators to Restricted Boltzmann
machine



Restricted Boltzmann machine

 Special case of Boltzmann machine with latent variables:
exp(—E (v, h))
p(v, h) =

Z
where the energy function is
E(v,h) = —v'Wh—-bTv—c'h
with the weight matrix I/ and the bias b, ¢

e Partition function
Z = Z Z exp(—E (v, h))
vV h




Restricted Boltzmann machine

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Restricted Boltzmann machine

* Conditional distribution is factorial

_p(w,h)
p(h|v) = () —Up(thV)

and
p(hj — 1|v) = a(cj + vTW:J-)

is logistic function



Restricted Boltzmann machine

e Similarly,

p(vih) =20 ﬂp(vlm)

p(v; = 11h) = a(b; + W; .h)

is logistic function

and



Deep Boltzmann machine

* Special case of energy model. Take 3 hidden layers and ignore bias:

exp(—E (v, ht, h?, h3))

h1h2h3 —
p(v,h*, h*, h°) ~

* Energy function
E(U, hl, hZ’ h3) — —UTW1h1 _ (hl)TWZhZ _ (hz)TW3h3
with the weight matrices W, W2, W3
e Partition function

7 = z exp(—E (v, h', h%, h3))
v,h1,h2 h3



Deep Boltzmann machine

Figure from Deep Learning,
Goodfellow, Bengio and Courville



