Deep Learning Basics
Lecture /: Factor Analysis

Princeton University COS 495

Instructor: Yingyu Liang




Supervised v.s. Unsupervised



Math formulation for supervised learning

* Given training data {(x;,y;): 1 < i < n}i.i.d. from distribution D
* Find y = f(x) € € that minimizes L(f) = % ~ U X, v0)
* s.t. the expected loss is small

L(f) — [E(x,y)va 1L x, y)]



Unsupervised learning

* Given training data {x;: 1 < i < n}i.i.d. from distribution D
e Extract some “structure” from the data

* Do not have a general framework

e Typical unsupervised tasks:
 Summarization: clustering, dimension reduction
* Learning probabilistic models: latent variable model, density estimation



Principal Component Analysis (PCA)



High dimensional data

* Example 1: images

Dimension: 300x300 = 90,000



High dimensional data

* Example 2: documents

* Features:
e Unigram (count of each word): thousands
e Bigram (co-occurrence contextual information): millions

* Netflix survey: 480189 users x 17770 movies

User 1
User 2 ? ? 3 1 2 5
User 3 4 3 1 ? 5 1

Example from Nina Balcan



Principal Component Analysis (PCA)

e Data analysis point of view: dimension reduction techniqgue on a given
set of high dimensional data {x;: 1 < i < n}

* Math point of view: eigen-decomposition of the covariance (or
singular value decomposition of the data)

e Classic, commonly used tool



Principal Component Analysis (PCA)

e Extract hidden lower dimensional structure of the data
* Try to capture the variance structure as much as possible

* Computation: solved by singular value decomposition (SVD)



Principal Component Analysis (PCA)

* Definition: an orthogonal projection or transformation of the data
into a (typically lower dimensional) subspace so that the variance of
the projected data is maximized.
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Figure from isomorphismes @stackexchange



Principal Component Analysis (PCA)

* An illustration of the projection to 1 dim
* Pay attention to the variance of the projected points

Figure from amoeba@stackexchange



Principal Component Analysis (PCA)

* Principal Components (PC) are directions that capture most of the
variance in the data

* First PC: direction of greatest variability in data

* Data points are most spread out when projected on the first PC compared to
any other direction

e Second PC: next direction of greatest variability, orthogonal to first PC

* Third PC: next direction of greatest variability, orthogonal to first and
second PC’s



Math formulation

* Suppose the data are centered: )./_; x; = 0

* Then their projections on any direction v are centered: )., vl

Xi:()

* First PC: maximize theT\L/ariance of the projections

maXZ(vTxi)Z , s.t.vlv=1
1%
i=1

equivalent to

max v XXTv, s.t. viv=1
v

where the columns of X are the data points



Math formulation

e First PC:

T

max v XXTv, s.t. viv=1

1%
where the columns of X are the data points

 Solved by Lagrangian: exists 4, so that

max v XXTv — vty
%

20> XXT—-ADv=0-> XXTv=lv

ov



Computation: Eigen-decomposition
e First PC: XX'Tv = Av

e XX : covariance matrix

* v : eigen-vector of the covariance matrix

* First PC: first eigen-vector of the covariance matrix

* Top k PC’s: similar argument shows they are the top k eigen-vectors



Computation: Eigen-decomposition

e Top k PC’s: the top k eigen-vectors XX U = AU
where A is a diagonal matrix
* U are the left singular vectors of X

e Recall SVD decomposition theorem:

* An m X n real matrix M has factorization M = UXV" where U is an
m X m orthogonal matrix, X is a m X n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and Visann X n
orthogonal matrix.



Equivalent view: low rank approximation

* First PC maximizes variance:

max v XXTv, s.t. v
1Y

Ty =1

 Alternative viewpoint: find vector v such that the projection yields
minimum MSE reconstruction

n
1
min —2||xi—vaxi||2, s.t. viv=1
v M
=1



Equivalent view: low rank approximation

 Alternative viewpoint: find vector v such that the projection yields
minimum MSE reconstruction

n
1
min —ani—vaxiHZ, s.t. viv=1
v on
i=1
blue? + green? = black? Xj v
black? is fixed (it's just the data)
V- Xj

So, maximizing blue® is
equivalent To minimizing green?

Figure from Nina Balcan



summary

* PCA: orthogonal projection that maximizes variance
* Low rank approximation: orthogonal projection that minimizes error
* Eigen-decomposition/SVD

* All equivalent for centered data



Sparse codin:

UuQ



A latent variable view of PCA

* Let hi — UT.X'i
* Data point viewed as x; = vh; + noise




A latent variable view of PCA

e Consider top k PC’s U
* Let hi — UTXi
* Data point viewed as x; = Uh; + noise




A latent variable view of PCA

PCA structure assumption:

* Consider top k PC’s U low dimension. What about
e leth: = UTx other assumptions?
I — l

* Data point viewed as x; = Uh; + noise




Sparse coding

e Structure assumption: h is sparse, i.e., ||, is small

* Dimension of h can be large




Sparse coding

 Latent variable probabilistic model view:

p(x|lh) =Wh+ N (0,%1),h is sparse,

* E.g., from Laplacian prior: p(h) = %exp(—g |hl1)




Sparse coding

e Suppose W is known. MLE on h is
h* = arg mi?xlogp(hlx)

* - 2
h* = argmr}n/l‘lhl‘l + B|lx — Wh”z

e Suppose both I/, h unknown.
e Typically alternate between updating W, h



Sparse coding

* Historical note: study on visual system

* Bruno A Olshausen, and David Field. "Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images." Nature 381.6583 (1996): 607-6009.



Project paper list



Supervised learning

* AlexNet: ImageNet Classification with Deep Convolutional Neural
Networks

* GoogleNet: Going Deeper with Convolutions

* Residue Network: Deep Residual Learning for Image Recognition



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.03385

Unsupervised learning

* Deep belief networks: A fast learning algorithm for deep belief nets

e Reducing the Dimensionality of Data with Neural Networks

 Variational autoencoder: Auto-Encoding Variational Bayes

* Generative Adversarial Nets



https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://www.cs.toronto.edu/~hinton/science.pdf
http://arxiv.org/abs/1312.6114
http://datascienceassn.org/sites/default/files/Generative Adversarial Nets.pdf

Recurrent neural networks

e Long-short term memory

e Memory networks

* Sequence to Sequence Learning with Neural Networks



http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://arxiv.org/abs/1410.3916
http://arxiv.org/pdf/1409.3215.pdf

You choose the paper that interests you!

* Need to consult with TA
* Heavier responsibility on the student side if customize the project

* Check recent papers in the conferences ICML, NIPS, ICLR

* Check papers by leading researchers: Hinton, Lecun, Bengio, etc
* Explore whether deep learning can be applied to your application

* Not recommend arXiv: too many deep learning papers


http://icml.cc/2015/
https://nips.cc/Conferences/2015/AcceptedPapers
http://www.iclr.cc/doku.php

