Deep Learning Basics Lecture 7: Factor Analysis

Princeton University COS 495
Instructor: Yingyu Liang

Supervised v.s. Unsupervised

Math formulation for supervised learning

- Given training data $\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Find $y=f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f)=\frac{1}{n} \sum_{i=1}^{n} l\left(f, x_{i}, y_{i}\right)$
- s.t. the expected loss is small

$$
L(f)=\mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
$$

Unsupervised learning

- Given training data $\left\{x_{i}: 1 \leq i \leq n\right\}$ i.i.d. from distribution D
- Extract some "structure" from the data
- Do not have a general framework
- Typical unsupervised tasks:
- Summarization: clustering, dimension reduction
- Learning probabilistic models: latent variable model, density estimation

Principal Component Analysis (PCA)

High dimensional data

- Example 1: images

Dimension: $300 \times 300=90,000$

High dimensional data

- Example 2: documents
- Features:
- Unigram (count of each word): thousands
- Bigram (co-occurrence contextual information): millions
- Netflix survey: 480189 users x 17770 movies

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5	Movie 6	...
User 1	5	$?$	$?$	1	3	$?$	
User 2	$?$	$?$	3	1	2	5	
User 3	4	3	1	$?$	5	1	
\ldots							
..							

Principal Component Analysis (PCA)

- Data analysis point of view: dimension reduction technique on a given set of high dimensional data $\left\{x_{i}: 1 \leq i \leq n\right\}$
- Math point of view: eigen-decomposition of the covariance (or singular value decomposition of the data)
- Classic, commonly used tool

Principal Component Analysis (PCA)

- Extract hidden lower dimensional structure of the data
- Try to capture the variance structure as much as possible
- Computation: solved by singular value decomposition (SVD)

Principal Component Analysis (PCA)

- Definition: an orthogonal projection or transformation of the data into a (typically lower dimensional) subspace so that the variance of the projected data is maximized.

Principal Component Analysis (PCA)

- An illustration of the projection to 1 dim
- Pay attention to the variance of the projected points

Principal Component Analysis (PCA)

- Principal Components (PC) are directions that capture most of the variance in the data
- First PC: direction of greatest variability in data
- Data points are most spread out when projected on the first PC compared to any other direction
- Second PC: next direction of greatest variability, orthogonal to first PC
- Third PC: next direction of greatest variability, orthogonal to first and second PC's
- ...

Math formulation

- Suppose the data are centered: $\sum_{i=1}^{n} x_{i}=0$
- Then their projections on any direction v are centered: $\sum_{i=1}^{n} v^{T} x_{i}=0$
- First PC: maximize the variance of the projections

$$
\max _{v} \sum_{i=1}^{n}\left(v^{T} x_{i}\right)^{2}
$$

$$
\text { s.t. } v^{T} v=1
$$

equivalent to

$$
\max _{v} v^{T} X X^{T} v, \quad \text { s.t. } v^{T} v=1
$$

where the columns of X are the data points

Math formulation

- First PC:

$$
\max _{v} v^{T} X X^{T} v, \quad \text { s.t. } v^{T} v=1
$$

where the columns of X are the data points

- Solved by Lagrangian: exists λ, so that

$$
\begin{gathered}
\max _{v} v^{T} X X^{T} v-\lambda v^{T} v \\
\frac{\partial}{\partial v}=0 \rightarrow \quad\left(X X^{T}-\lambda I\right) v=0 \rightarrow X X^{T} v=\lambda v
\end{gathered}
$$

Computation: Eigen-decomposition

- First PC: $X X^{T} v=\lambda v$
- $X X^{T}$: covariance matrix
- v : eigen-vector of the covariance matrix
- First PC: first eigen-vector of the covariance matrix
- Top k PC's: similar argument shows they are the top k eigen-vectors

Computation: Eigen-decomposition

- Top k PC's: the top k eigen-vectors $X X^{T} U=\Lambda U$ where Λ is a diagonal matrix
- U are the left singular vectors of X
- Recall SVD decomposition theorem:
- An $m \times n$ real matrix M has factorization $M=U \Sigma V^{T}$ where U is an $m \times m$ orthogonal matrix, Σ is a $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is an $n \times n$ orthogonal matrix.

Equivalent view: low rank approximation

- First PC maximizes variance:

$$
\max _{v} v^{T} X X^{T} v, \quad \text { s.t. } v^{T} v=1
$$

- Alternative viewpoint: find vector v such that the projection yields minimum MSE reconstruction

$$
\min _{v} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-v v^{T} x_{i}\right\|^{2}, \quad \text { s.t. } v^{T} v=1
$$

Equivalent view: low rank approximation

- Alternative viewpoint: find vector v such that the projection yields minimum MSE reconstruction

$$
\min _{v} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-v v^{T} x_{i}\right\|^{2}, \quad \text { s.t. } v^{T} v=1
$$

blue $^{2}+$ green $^{2}=$ black 2
black ${ }^{2}$ is fixed (it's just the data)
So, maximizing blue ${ }^{2}$ is equivalent to minimizing green ${ }^{2}$

Summary

- PCA: orthogonal projection that maximizes variance
- Low rank approximation: orthogonal projection that minimizes error
- Eigen-decomposition/SVD
- All equivalent for centered data

Sparse coding

A latent variable view of PCA

- Let $h_{i}=v^{T} x_{i}$
- Data point viewed as $x_{i}=v h_{i}+$ noise

A latent variable view of PCA

- Consider top k PC's U
- Let $h_{i}=U^{T} x_{i}$
- Data point viewed as $x_{i}=U h_{i}+$ noise

A latent variable view of PCA

- Consider top k PC's U
- Let $h_{i}=U^{T} x_{i}$
- Data point viewed as $x_{i}=U h_{i}+$ noise

Sparse coding

- Structure assumption: h is sparse, i.e., $|h|_{0}$ is small
- Dimension of h can be large

Sparse coding

- Latent variable probabilistic model view:

$$
p(x \mid h)=W h+N\left(0, \frac{1}{\beta} I\right), h \text { is sparse, }
$$

- E.g., from Laplacian prior: $p(h)=\frac{\lambda}{2} \exp \left(-\frac{\lambda}{2}|h|_{1}\right)$

Sparse coding

- Suppose W is known. MLE on h is

$$
\begin{aligned}
h^{*} & =\arg \max _{h} \log p(h \mid x) \\
h^{*} & =\arg \min _{h} \lambda| | h| |_{1}+\beta| | x-W h \|_{2}^{2}
\end{aligned}
$$

- Suppose both W, h unknown.
- Typically alternate between updating W, h

Sparse coding

- Historical note: study on visual system
- Bruno A Olshausen, and David Field. "Emergence of simple-cell receptive field properties by learning a sparse code for natural images." Nature 381.6583 (1996): 607-609.

Project paper list

Supervised learning

- AlexNet: ImageNet Classification with Deep Convolutional Neural Networks
- GoogLeNet: Going Deeper with Convolutions
- Residue Network: Deep Residual Learning for Image Recognition

Unsupervised learning

- Deep belief networks: A fast learning algorithm for deep belief nets
- Reducing the Dimensionality of Data with Neural Networks
- Variational autoencoder: Auto-Encoding Variational Bayes
- Generative Adversarial Nets

Recurrent neural networks

- Long-short term memory
- Memory networks
- Sequence to Sequence Learning with Neural Networks

You choose the paper that interests you!

- Need to consult with TA
- Heavier responsibility on the student side if customize the project
- Check recent papers in the conferences ICML, NIPS, ICLR
- Check papers by leading researchers: Hinton, Lecun, Bengio, etc
- Explore whether deep learning can be applied to your application
- Not recommend arXiv: too many deep learning papers

