Deep Learning Basics
Lecture 7: factor analysis

Princeton University COS 495
Instructor: Yingyu Liang
Supervised vs Unsupervised
Math formulation for supervised learning

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) that minimizes \(\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i) \)
• s.t. the expected loss is small
 \[
 L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
 \]
Unsupervised learning

• Given training data \(\{x_i: 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Extract some “structure” from the data

• Do not have a general framework
• Typical unsupervised tasks:
 • Summarization: clustering, dimension reduction
 • Learning probabilistic models: latent variable model, density estimation
Principal Component Analysis (PCA)
PCA

• Data analysis point of view: dimension reduction technique on a given set of high dimensional data \(\{ x_i : 1 \leq i \leq n \} \)

• Math point of view: eigen-decomposition of the covariance (or singular value decomposition of the data)

• Classic, commonly used tool
High dimensional data

- Example 1: images

Dimension: $300 \times 300 = 90,000$
High dimensional data

• Example 2: documents

• Features:
 • Unigram (count of each word): thousands
 • Bigram (co-occurrence contextual information): millions

• Netflix survey: 480189 users x 17770 movies

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
<th>Movie 5</th>
<th>Movie 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>5</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>User 2</td>
<td>?</td>
<td>?</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>?</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Example from Nina Balcan
Principal Component Analysis (PCA)

• Extract hidden lower dimensional structure of the data
 • Try to capture the variance structure as much as possible

• Computation: solved by singular value decomposition (SVD)
Principal Component Analysis (PCA)

- **Definition:** an orthogonal projection or transformation of the data into a (typically lower dimensional) subspace so that the variance of the projected data is maximized.

![Figure from isomorphisms @stackexchange](image-url)
Principal Component Analysis (PCA)

- An illustration of the projection to 1 dim
- Pay attention to the variance of the projected points

Figure from amoeba@stackexchange
Principal Component Analysis (PCA)

• Principal Components (PC) are directions that capture most of the variance in the data

• First PC: direction of greatest variability in data
 • Data points are most spread out when projected on the first PC compared to any other direction

• Second PC: next direction of greatest variability, orthogonal to first PC

• Third PC: next direction of greatest variability, orthogonal to first and second PC’s

• ...
Math formulation

• Suppose the data are centered: $\sum_{i=1}^{n} x_i = 0$
• Then their projections on any direction \mathbf{v} are centered: $\sum_{i=1}^{n} \mathbf{v}^T x_i = 0$

• First PC: maximize the variance of the projections

$$\max_{\mathbf{v}} \sum_{i=1}^{n} (\mathbf{v}^T x_i)^2 \quad s.t. \quad \mathbf{v}^T \mathbf{v} = 1$$

equivalent to

$$\max_{\mathbf{v}} \mathbf{v}^T XX^T \mathbf{v} \quad s.t. \quad \mathbf{v}^T \mathbf{v} = 1$$

where the columns of X are the data points
Math formulation

• First PC:

\[
\max_v v^T X X^T v, \quad \text{s. t. } v^T v = 1
\]

where the columns of \(X \) are the data points

• Solved by Lagrangian: exists \(\lambda \), so that

\[
\max_v v^T X X^T v - \lambda v^T v
\]

\[
\frac{\partial}{\partial v} = 0 \quad \rightarrow \quad (X X^T - \lambda I) v = 0 \quad \rightarrow \quad X X^T v = \lambda v
\]
Eigen-decomposition

• First PC: $XX^T \nu = \lambda \nu$

• XX^T: covariance matrix
• ν: eigen-vector of the covariance matrix
• First PC: first eigen-vector of the covariance matrix

• Top k PC’s: similar argument shows they are the top k eigen-vectors
Eigen-decomposition

• Top k PC’s: the top k eigen-vectors $XX^T U = \Lambda U$
 where Λ is a diagonal matrix
• U are the left singular vectors of X

• Recall SVD decomposition theorem:
• An $m \times n$ real matrix M has factorization $M = U\Sigma V^T$ where U is an $m \times m$ orthogonal matrix, Σ is a $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is an $n \times n$ orthogonal matrix.
Low rank approximation

• First PC maximizes variance:
\[
\max_v v^T XX^T v, \quad \text{s. t. } v^T v = 1
\]

• Alternative viewpoint: find vector \(v \) such that the projection yields minimum MSE reconstruction
\[
\min_v \frac{1}{n} \sum_{i=1}^{n} \|x_i - vv^T x_i\|^2, \quad \text{s. t. } v^T v = 1
\]
Low rank approximation

• Alternative viewpoint: find vector v such that the projection yields minimum MSE reconstruction

$$\min_v \frac{1}{n} \sum_{i=1}^{n} \|x_i - vv^T x_i\|^2, \quad s.t. \quad v^Tv = 1$$

$\text{blue}^2 + \text{green}^2 = \text{black}^2$

black^2 is fixed (it’s just the data)

So, maximizing blue^2 is equivalent to minimizing green^2
Summary

• PCA: orthogonal projection that maximizes variance
• Low rank approximation: orthogonal projection that minimizes error
• Eigen-decomposition/SVD

• All equivalent for centered data
Sparse coding
A latent variable view of PCA

- Let $h_i = v^T x_i$
- Data point viewed as $x_i = vh_i + noise$
A latent variable view of PCA

• Consider top k PC’s U
• Let $h_i = U^T x_i$
• Data point viewed as $x_i = Uh_i + noise$
A latent variable view of PCA

- Consider top k PC’s U
- Let $h_i = U^T x_i$
- Data point viewed as $x_i = Uh_i + noise$

Structure assumption: h low dimension. What about other assumptions?
Sparse coding

- Structure assumption: h is sparse, i.e., $|h|_0$ is small
- Dimension of h can be large
Sparse coding

• Latent variable probabilistic model view:

\[p(x|h) = Wh + N \left(0, \frac{1}{\beta} I \right), \text{ } h \text{ is sparse,} \]

• E.g., from Laplacian prior: \(p(h) = \frac{\lambda}{2} \exp(-\frac{\lambda}{2} |h|_1) \)
Sparse coding

• Suppose W is known. MLE on h is

$$h^* = \arg \max_h \log p(h|x)$$

$$h^* = \arg \min_h \lambda \|h\|_1 + \beta \|x - Wh\|_2^2$$

• Suppose both W, h unknown.
 • Typically alternate between updating W, h
Sparse coding

• Historical note: study on visual system

Project paper list
Supervised learning

• AlexNet: *ImageNet Classification with Deep Convolutional Neural Networks*

• GoogLeNet: *Going Deeper with Convolutions*

• Residue Network: *Deep Residual Learning for Image Recognition*
Unsupervised learning

- Deep belief networks: *A fast learning algorithm for deep belief nets*

- *Reducing the Dimensionality of Data with Neural Networks*

- Variational autoencoder: *Auto-Encoding Variational Bayes*

- *Generative Adversarial Nets*
Recurrent neural networks

• Long-short term memory

• Memory networks

• Sequence to Sequence Learning with Neural Networks
You choose the paper that interests you!

• Need to consult with TA
 • Heavier responsibility on the student side if customize the project

• Check recent papers in the conferences ICML, NIPS, ICLR
• Check papers by leading researchers: Hinton, Lecun, Bengio, etc
• Explore whether deep learning can be applied to your application

• Not recommend arXiv: too many deep learning papers