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Convolutional neural networks

• Strong empirical application performance

• Convolutional networks: neural networks that use convolution in 
place of general matrix multiplication in at least one of their layers

for a specific kind of weight matrix 𝑊

ℎ = 𝜎(𝑊𝑇𝑥 + 𝑏)



Convolution



Convolution: math formula

• Given functions 𝑢(𝑡) and 𝑤(𝑡), their convolution is a function 𝑠 𝑡

• Written as 

𝑠 𝑡 = ∫ 𝑢 𝑎 𝑤 𝑡 − 𝑎 𝑑𝑎

𝑠 = 𝑢 ∗ 𝑤 or 𝑠 𝑡 = (𝑢 ∗ 𝑤)(𝑡)



Convolution: discrete version

• Given array 𝑢𝑡 and 𝑤𝑡, their convolution is a function 𝑠𝑡

• Written as 

• When  𝑢𝑡 or 𝑤𝑡 is not defined, assumed to be 0

𝑠𝑡 = ෍

𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

𝑠 = 𝑢 ∗ 𝑤 or 𝑠𝑡 = 𝑢 ∗ 𝑤 𝑡



Illustration 1

a b c d e f

x y z

xb+yc+zd

𝑤 = [z, y, x]
𝑢 = [a, b, c, d, e, f]



Illustration 1

a b c d e f

x y z

xc+yd+ze



Illustration 1

a b c d e f

x y z

xd+ye+zf



Illustration 1: boundary case

a b c d e f

x y

xe+yf



Illustration 1 as matrix multiplication

y z
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x y z
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Illustration 2: two dimensional case

a b c d

e f g h

i j k l

w x

y z

wa + bx + 
ey + fz



Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx + 
fy + gz

wa + bx + 
ey + fz



Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx + 
fy + gz

wa + bx + 
ey + fz

Kernel 
(or filter)

Feature map

Input



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Fully connected layer, 𝑚 × 𝑛 edges

𝑚 output nodes

𝑛 input nodes



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutional layer,  ≤ 𝑚 × 𝑘 edges

𝑚 output nodes

𝑛 input nodes

𝑘 kernel size



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Multiple convolutional layers: larger receptive field



Advantage: parameter sharing

Figure from Deep Learning, 
by Goodfellow, Bengio, 
and Courville

The same kernel 
are used repeatedly.
E.g., the black edge 
is the same weight
in the kernel.



Advantage: equivariant representations

• Equivariant: transforming the input = transforming the output

• Example: input is an image, transformation is shifting

• Convolution(shift(input)) = shift(Convolution(input))

• Useful when care only about the existence of a pattern, rather than 
the location 



Pooling



Terminology

Figure from Deep Learning, 
by Goodfellow, Bengio, 
and Courville



Pooling

• Summarizing the input (i.e., output the max of the input)

Figure from Deep Learning, by Goodfellow, Bengio, and Courville



Advantage

Induce invariance

Figure from Deep Learning, 
by Goodfellow, Bengio, 
and Courville



Motivation from neuroscience

• David Hubel and Torsten Wiesel studied early visual system in human 
brain (V1 or primary visual cortex), and won Nobel prize for this

• V1 properties
• 2D spatial arrangement

• Simple cells: inspire convolution layers

• Complex cells: inspire pooling layers



Variants of convolution and pooling



Variants of convolutional layers

• Multiple dimensional convolution

• Input and kernel can be 3D
• E.g., images have (width, height, RBG channels)

• Multiple kernels lead to multiple feature maps (also called channels)

• Mini-batch of images have 4D: (image_id, width, height, RBG 
channels)



Variants of convolutional layers

• Padding: valid

a b c d e f

x y z

xd+ye+zf



Variants of convolutional layers

• Padding: same

a b c d e f

x y

xe+yf



Variants of convolutional layers

• Stride

Figure from Deep Learning, by Goodfellow, Bengio,  and Courville



Variants of convolutional layers

• Others: 
• Tiled convolution

• Channel specific convolution

• ……



Variants of pooling

• Stride and padding

Figure from Deep Learning, by Goodfellow, Bengio,  and Courville



Variants of pooling

• Max pooling 𝑦 = max{𝑥1, 𝑥2, … , 𝑥𝑘}

• Average pooling 𝑦 = mean{𝑥1, 𝑥2, … , 𝑥𝑘}

• Others like max-out


