Deep Learning Basics
Lecture 2: Backpropagation

Princeton University COS 495
Instructor: Yingyu Liang
How to train the dragon?
How to get the expected output

Loss of the system

\[l(x; \theta) = l(f_\theta, x, y) \]
How to get the expected output

Find direction d so that:

$$l(x; \theta + d) \approx 0$$
How to get the expected output

How to find d: $l(x; \theta + \epsilon v) \approx l(x; \theta) + \nabla l(x; \theta) \ast \epsilon v$ for small scalar ϵ

Loss $l(x; \theta + d) \approx 0$
How to get the expected output

Conclusion: Move θ along $-\nabla l(x; \theta)$ for a small amount
Neural Networks as real circuits

Pictorial illustration of gradient descent
Gradient

• Gradient of the loss is simple
 • E.g., $l(f_\theta, x, y) = (f_\theta(x) - y)^2 / 2$
 • $\frac{\partial l}{\partial \theta} = (f_\theta(x) - y) \frac{\partial f}{\partial \theta}$

• Key part: gradient of the hypothesis
Open the box: real circuit
Single neuron

Function: $f = x_1 - x_2$
Single neuron

Function: $f = x_1 - x_2$

Gradient: $\frac{\partial f}{\partial x_1} = 1, \frac{\partial f}{\partial x_2} = -1$
Two neurons

Function: $f = x_1 - x_2 = x_1 - (x_3 + x_4)$
Function: $f = x_1 - x_2 = x_1 - (x_3 + x_4)$
Gradient: $\frac{\partial x_2}{\partial x_3} = 1, \frac{\partial x_2}{\partial x_4} = 1$. What about $\frac{\partial f}{\partial x_3}$?
Two neurons

Function: \(f = x_1 - x_2 = x_1 - (x_3 + x_4) \)

Gradient:
\[
\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_3} = -1
\]
Function:

\[f = x_1 - x_2 = x_1 - (x_3 + x_5 + x_4) \]

Gradient:

\[\frac{\partial x_2}{\partial x_5} = 1 \]
Multiple input

Function: $f = x_1 - x_2 = x_1 - (x_3 + x_5 + x_4)$

Gradient: $\frac{\partial f}{\partial x_5} = \frac{\partial f}{\partial x_5} \frac{\partial x_5}{\partial x_3} = -1$
Weights on the edges

Function: $f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4)$
Weights on the edges

Function: $f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4)$
Weights on the edges

Function: \(f = x_1 - x_2 = x_1 - (w_3 x_3 + w_4 x_4) \)

Gradient: \(\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial w_3} = -1 \times x_3 = -x_3 \)
Activation

Function: $f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4)$
Function: \(f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4) \)
Let \(\text{net}_2 = w_3 x_3 + w_4 x_4 \)
Activation

Function: \(f = x_1 - x_2 = x_1 - \sigma(w_3 x_3 + w_4 x_4) \)

Gradient: \(\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \cdot \frac{\partial x_2}{\partial \text{net}_2} \cdot \frac{\partial \text{net}_2}{\partial w_3} = -1 \times \sigma' \times x_3 = -\sigma' x_3 \)
Activation

Function: \(f = x_1 - x_2 = x_1 - \sigma(w_3x_3 + w_4x_4) \)

Gradient:
\[
\frac{\partial f}{\partial w_3} = \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial \text{net}_2} \frac{\partial \text{net}_2}{\partial w_3} = -1 \times \sigma' \times x_3 = -\sigma' x_3
\]
Multiple paths

Function: $f = x_1 - x_2 = (x_1 + x_5) - \sigma(w_3 x_3 + w_4 x_4)$
Multiple paths

Function: \(f = x_1 - x_2 = (x_1 + x_5) - \sigma(w_3 x_3 + w_4 x_4) \)
Multiple paths

Function:
\[f = x_1 - x_2 = (x_3 + x_5) - \sigma(w_3 x_3 + w_4 x_4) \]

Gradient:
\[\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_2} \frac{\partial \text{net}_2}{\partial x_3} + \frac{\partial f}{\partial x_1} \frac{\partial x_3}{\partial x_3} = -1 \times \sigma' \times w_3 + 1 \times 1 = -\sigma' w_3 + 1 \]
Summary

• Forward to compute f
• Backward to compute the gradients
Math form
Gradient descent

• Minimize loss $\hat{L}(\theta)$, where the hypothesis is parametrized by θ

• Gradient descent
 • Initialize θ_0
 • $\theta_{t+1} = \theta_t - \eta_t \nabla \hat{L}(\theta_t)$
Stochastic gradient descent (SGD)

• Suppose data points arrive one by one

\[\hat{L}(\theta) = \frac{1}{n} \sum_{t=1}^{n} l(\theta, x_t, y_t), \] but we only know \(l(\theta, x_t, y_t) \) at time \(t \)

• Idea: simply do what you can based on local information
 • Initialize \(\theta_0 \)
 • \(\theta_{t+1} = \theta_t - \eta_t \nabla l(\theta_t, x_t, y_t) \)
Mini-batch

• Instead of one data point, work with a small batch of b points
 \[(x_{tb+1}, y_{tb+1}), \ldots, (x_{tb+b}, y_{tb+b})\]

• Update rule
 \[
 \theta_{t+1} = \theta_t - \eta_t \nabla \left(\frac{1}{b} \sum_{1 \leq i \leq b} l(\theta_t, x_{tb+i}, y_{tb+i}) \right)
 \]

• Typical batch size: $b = 128$