Deep Learning Basics
Lecture 1: Feedforward

Princeton University COS 495

Instructor: Yingyu Liang

Motivation |: representation learning

Machine learning 1-2-3

* Collect data and extract features
e Build model: choose hypothesis class H and loss function [
* Optimization: minimize the empirical loss

Features

Color Histogram

Extract build .
features - . hypothesis YV = W ¢ (x)

B Red M Green HBlue

Features: part of the model

Nonlinear model
\

¢ 23 |
T T TTTT—, X « X
X| X 2| % X
X X b x .
X X 8 X X build
X S x T
% —
2N N o]0 9% hypoth y =w"¢(x)
—_ e - ypothesis
&O % ﬂ:} () ORNS { Zl
X x X x
X

|

Linear model

Example: Polynomial kernel SVM

y = sign(w' ¢ (x) + b)

Fixed ¢ (x)

Motivation: representation learning

* Why don’t we also learn ¢(x)?

Learn w
— y=wiopX)

= Learn ¢ (x)

Feedforward networks

* View each dimension of ¢ (x) as something to be learned

@

y=w¢p(x)

./

@

Feedforward networks

e Linear functions ¢; (x) = 6! x don’t work: need some nonlinearity

@

y=w¢p(x)

./

@

Feedforward networks

* Typically, set ¢;(x) = r(6/ x) where r(-) is some nonlinear function

@

y=w¢p(x)

./

@

Feedforward deep networks

 What if we go deeper?

Ohatput

A
Output Chatput Mapping from
features
Additionsl
0 Mapping from Mapping from layers of more
ntput features features abstract
features
Hand- Hand- Simple
designed designed Features fmm:E:m
Program features
Input Input Input Input
Classic)
Rule-based , Representation Dreep
machine . .
systems learning learning

lesrning

Figure from

Deep learning, by

Goodfellow, Bengio, Courville.

Dark boxes are things to be learned.

Motivation |l: neurons

Motivation: neurons

./'/ ‘ /"‘
A Ro}:\g 1#
< ,endoplasmic y
reticul 7 -
— Dendrite

endoplasmic’ < _
reticulum

Dendritic spines

Lysosome

Microtubules

Mitochondria

:i -
1 /" Golgi apparatus : d Myelin sheath
| Membrane .

Figure from
Wikipedia

Motivation: abstract neuron model

* Neuron activated when the correlation
between the input and a pattern 6
exceeds some threshold b

e y = threshold(8%x — b) X2
ory =r(0"x —b)

* () called activation function

Motivation: artificial neural networks

Motivation: artificial neural networks

* Put into layers: feedforward deep networks

Components in Feedforward
networks

Components

* Representations:
* Input
* Hidden variables
* Layers/weights:
* Hidden layers
* Output layer

Components

First layer

Input x

Hidden variables h?!

h2

Output layer
I

\

Input
* Represented as a vector

* Sometimes require some

preprocessing, e.g.,
e Subtract mean
* Normalize to [-1,1]

Output layers

Output layer
I

e Regression:y = w'h + b

* Linear units: no nonlinearity

Output layers

Output layer

* Multi-dimensional regression: y = W' h + b A

(|

* Linear units: no nonlinearity

Output layers

Output layer

* Binary classification: y = a(w' h + b) A

* Corresponds to using logistic regression on h

Qutput layers

: . . Output layer
 Multi-class classification: P | y

e y = softmax(z) wherez = W'h + b
* Corresponds to using multi-class

/ \

logistic regression on h

Hidden layers

* Neuron take weighted linear
combination of the previous
layer

* So can think of outputting one
value for the next layer

hi hi+1

Hidden layers
cy =r(wlx +b)

e Typical activation function r
* Threshold t(z) = [z = 0]
 Sigmoid o(z) = 1/(1 + exp(—2))
* Tanh tanh(z) = 20(2z) — 1

Hidden layers

 Problem: saturation

Too small gradient

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Hidden layers

e Activation function ReLU (rectified linear unit)
e ReLU(z) = max{z, 0}

The Rectified Linear Activation Function

g(z) = max{0, z}

U Figure from Deep learning, by

[Goodfellow, Bengio, Courville.
0

]

Hidden layers

e Activation function ReLU (rectified linear unit)
* ReLU(z) = max{z, 0}

Gradient O The Rectified Linear Activation Function
1

max{0, z }

g(2)

Hidden layers

* Generalizations of ReLU gReLU(z) = max{z, 0} + @ min{z, 0}
* Leaky-ReLU(z) = max{z, 0} + 0.01 min{z, 0}
e Parametric-ReLU(z): o learnable

gReLU(z)

