

Deep Learning Basics Lecture 11: Practical Methodology

Princeton University COS 495

Instructor: Yingyu Liang

Designing process

Practical methodology

- Important to know a variety of techniques and understand their pros and cons
- In practice, "can do much better with a correct application of a commonplace algorithm than by sloppily applying an obscure algorithm"

- 1. Determine your goals: input and output; evaluation metrics
- 2. Establish an end-to-end pipeline
- 3. Determine bottlenecks in performance
- 4. Repeatedly make incremental changes based on findings

From Andrew Ng's lecture and the book deep Learning

- 1. Determine your goals: input and output; evaluation metrics
 - What is the input of the system?
 - What is the output of the system?
 - What can be regarded as a good system? Accuracy? Speed? Memory? ...
- 2. Establish an end-to-end pipeline
- 3. Determine bottlenecks in performance
- 4. Repeatedly make incremental changes based on findings

- 1. Determine your goals: input and output; evaluation metrics
- 2. Establish an end-to-end pipeline
 - Design the system as soon as possible, no need to be perfect
 - Can be based on existing systems for similar goals
- 3. Determine bottlenecks in performance
- 4. Repeatedly make incremental changes based on findings

- 1. Determine your goals: input and output; evaluation metrics
- 2. Establish an end-to-end pipeline
- 3. Determine bottlenecks in performance
 - Divide the system into components
 - Diagnose which component performing worse than expected
 - Overfitting? Underfitting? Bugs in the software? Bad/too small dataset? ...
- 4. Repeatedly make incremental changes based on findings

- 1. Determine your goals: input and output; evaluation metrics
- 2. Establish an end-to-end pipeline
- 3. Determine bottlenecks in performance
- 4. Repeatedly make incremental changes based on findings
 - Do not make big changes (unless the system just too bad)
 - Replace system component? Change optimization algorithm? Adjust hyperparameters? Get more/new data?

To begin with

Deep learning?

- First question: do you really need deep learning systems?
- Maybe simple models like logistic regression/SVM suffice for your goals (i.e., shallow models)
- Choose deep learning if
 - The task fall into the areas that deep learning is known to perform well
 - The task is complicated enough that deep models have a better chance to win

Which networks to choose?

- Based on the input and the goal
- Vector input, supervised learning: feedforward networks
 - If know input topological structure, use convolution
 - Activation function: typically ReLU

Which networks to choose?

- Based on the input and the goal
- Vector input, unsupervised: generative model; autoencoder; energy based model
 - Highly depend on your goal

Which networks to choose?

- Based on the input and the goal
- Sequential input: Recurrent network
 - LSTM (long-short term memory network)
 - GRU (Gated Recurrent Unit)
 - Memory network
 - Attention-based variants

Which optimization algorithm?

- SGD with momentum and a decaying learning rate
- Momentum: 0.5 at the beginning and 0.9 at the end
- Learning rate decaying schemes
 - linearly until reaching a fixed minimum learning rate
 - decaying exponentially
 - decreasing the learning rate by a factor of 2-10 each time validation error plateaus

What regularizations?

- l_2 regularization
- Early stopping
- Dropout
- Batch Normalization: can replace dropout
- Data augmentation if the transformations known/easy to implement

Reusing models

- If your task is similar to another task studied: copy the model/optimization algorithm/hyperparameters, improve them
- Even can copy the trained models and then fine-tune it

Whether to use unsupervised pretraining?

- NLP: yes, use word embeddings almost all the time
- Computer vision: not quite; unsupervised now only good for semisupervised learning (a few labeled data, a lot of unlabeled data)

Tuning hyperparameters

- Performance: training/test errors; reconstruction; generative ability...
- Resources: training time; test time; memory...

Two types of approaches

- Manually tune: need to understand the hyperparameters and their effects on the goals
- Automatically tune: need resources

Manually tune

- Need to know: the relationship between hyperparameters and training/test errors and computational resources (memory and runtime)
- Example: increase number of hidden units in each layer will
 - Increase the model capacity
 - Increase the generalization error (= test error training error)
 - Increase memory and runtime

Automatically tune

- Grid search
- Random search
- Model-based optimization (another level of optimization)
 - Variables: hyperparameters
 - Objective: validation errors

Debugging strategies

Difficulties

- Do not know a prior what performance/behavior to expect
- Components of the model can adapt for each other
 - One components fails but the other components adapt to cover the failure

Debugging

- Try a small dataset
 - Faster, save time
- Inspect components
 - Monitor histograms of activations and gradients
 - Compare symbolic derivatives to numerical derivatives
- Compare training/validation/test errors
 - Overfitting or underfitting?
- Focus on worst mistake
 - On which data points it perform worst? Why?