Deep Learning Basics
Lecture 11: Practical Methodology

Princeton University COS 495

Instructor: Yingyu Liang



Designing process



Practical methodology

* Important to know a variety of techniques and understand their pros
and cons

* In practice, “can do much better with a correct application of a
commonplace algorithm than by sloppily applying an obscure
algorithm”



Practical designing process

Determine your goals: input and output; evaluation metrics
Establish an end-to-end pipeline

Determine bottlenecks in performance

Repeatedly make incremental changes based on findings

B W

From Andrew Ng’s lecture and the book deep Learning



Practical designing process

1. Determine your goals: input and output; evaluation metrics
 What is the input of the system?
 What is the output of the system?
 What can be regarded as a good system? Accuracy? Speed? Memory? ...



Practical designing process

2. Establish an end-to-end pipeline
* Design the system as soon as possible, no need to be perfect
* Can be based on existing systems for similar goals



Practical designing process

3. Determine bottlenecks in performance
* Divide the system into components
* Diagnose which component performing worse than expected
» Overfitting? Underfitting? Bugs in the software? Bad/too small dataset? ...



Practical designing process

4. Repeatedly make incremental changes based on findings
* Do not make big changes (unless the system just too bad)

* Replace system component? Change optimization algorithm? Adjust
hyperparameters? Get more/new data?



To begin with




Deep learning?

* First question: do you really need deep learning systems?

* Maybe simple models like logistic regression/SVM suffice for your
goals (i.e., shallow models)

* Choose deep learning if
* The task fall into the areas that deep learning is known to perform well
* The task is complicated enough that deep models have a better chance to win



Which networks to choose?

* Based on the input and the goal

* Vector input, supervised learning: feedforward networks
* |f know input topological structure, use convolution
» Activation function: typically ReLU



Which networks to choose?

* Based on the input and the goal

* Vector input, unsupervised: generative model; autoencoder; energy
based model

* Highly depend on your goal



Which networks to choose?

* Based on the input and the goal

e Sequential input: Recurrent network
e LSTM (long-short term memory network)
 GRU (Gated Recurrent Unit)
* Memory network
e Attention-based variants



Which optimization algorithm?
* SGD with momentum and a decaying learning rate

* Momentum: 0.5 at the beginning and 0.9 at the end

* Learning rate decaying schemes
* linearly until reaching a fixed minimum learning rate
* decaying exponentially

» decreasing the learning rate by a factor of 2-10 each time validation error
plateaus



What regularizations?

* [, regularization

 Early stopping

* Dropout

e Batch Normalization: can replace dropout

» Data augmentation if the transformations known/easy to implement



Reusing models

* If your task is similar to another task studied: copy the
model/optimization algorithm/hyperparameters, improve them

* Even can copy the trained models and then fine-tune it



Whether to use unsupervised pretraining?

* NLP: yes, use word embeddings almost all the time

 Computer vision: not quite; unsupervised now only good for semi-
supervised learning (a few labeled data, a lot of unlabeled data)



Tuning hyperparameters



Why?
* Performance: training/test errors; reconstruction; generative ability...

* Resources: training time; test time; memory...



Two types of approaches

 Manually tune: need to understand the hyperparameters and their
effects on the goals

» Automatically tune: need resources



Manually tune

* Need to know: the relationship between hyperparameters and
training/test errors and computational resources (memory and
runtime)

* Example: increase number of hidden units in each layer will
* Increase the model capacity
* Increase the generalization error (= test error — training error)
* Increase memory and runtime



Automatically tune

e Grid search
e Random search

* Model-based optimization (another level of optimization)
e Variables: hyperparameters
* Objective: validation errors



Debugging strategies



Difficulties

* Do not know a prior what performance/behavior to expect

 Components of the model can adapt for each other
* One components fails but the other components adapt to cover the failure



Debugging

* Try a small dataset
* Faster, save time

* Inspect components
* Monitor histograms of activations and gradients
 Compare symbolic derivatives to numerical derivatives

* Compare training/validation/test errors
e Overfitting or underfitting?

* Focus on worst mistake
* On which data points it perform worst? Why?



