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Designing process



Practical methodology

• Important to know a variety of techniques and understand their pros 
and cons

• In practice, “can do much better with a correct application of a 
commonplace algorithm than by sloppily applying an obscure 
algorithm”



Practical designing process

1. Determine your goals: input and output; evaluation metrics

2. Establish an end-to-end pipeline

3. Determine bottlenecks in performance

4. Repeatedly make incremental changes based on findings

From Andrew Ng’s lecture and the book deep Learning



Practical designing process

1. Determine your goals: input and output; evaluation metrics
• What is the input of the system? 

• What is the output of the system?

• What can be regarded as a good system? Accuracy? Speed? Memory? …

2. Establish an end-to-end pipeline

3. Determine bottlenecks in performance

4. Repeatedly make incremental changes based on findings



Practical designing process

1. Determine your goals: input and output; evaluation metrics

2. Establish an end-to-end pipeline
• Design the system as soon as possible, no need to be perfect

• Can be based on existing systems for similar goals

3. Determine bottlenecks in performance

4. Repeatedly make incremental changes based on findings



Practical designing process

1. Determine your goals: input and output; evaluation metrics

2. Establish an end-to-end pipeline

3. Determine bottlenecks in performance
• Divide the system into components 

• Diagnose which component performing worse than expected

• Overfitting? Underfitting? Bugs in the software? Bad/too small dataset?  …

4. Repeatedly make incremental changes based on findings



Practical designing process

1. Determine your goals: input and output; evaluation metrics

2. Establish an end-to-end pipeline

3. Determine bottlenecks in performance

4. Repeatedly make incremental changes based on findings
• Do not make big changes (unless the system just too bad)

• Replace system component? Change optimization algorithm? Adjust 
hyperparameters? Get more/new data?



To begin with



Deep learning?

• First question: do you really need deep learning systems?

• Maybe simple models like logistic regression/SVM suffice for your 
goals (i.e., shallow models)

• Choose deep learning if 
• The task fall into the areas that deep learning is known to perform well

• The task is complicated enough that deep models have a better chance to win



Which networks to choose?

• Based on the input and the goal

• Vector input, supervised learning: feedforward networks
• If know input topological structure, use convolution

• Activation function: typically ReLU



Which networks to choose?

• Based on the input and the goal

• Vector input, unsupervised: generative model; autoencoder; energy 
based model
• Highly depend on your goal



Which networks to choose?

• Based on the input and the goal

• Sequential input: Recurrent network
• LSTM (long-short term memory network)

• GRU (Gated Recurrent Unit)

• Memory network 

• Attention-based variants



Which optimization algorithm?

• SGD with momentum and a decaying learning rate

• Momentum: 0.5 at the beginning and 0.9 at the end

• Learning rate decaying schemes
• linearly until reaching a fixed minimum learning rate

• decaying exponentially

• decreasing the learning rate by a factor of 2-10 each time validation error 
plateaus



What regularizations?

• 𝑙2 regularization

• Early stopping

• Dropout

• Batch Normalization: can replace dropout

• Data augmentation if the transformations known/easy to implement



Reusing models

• If your task is similar to another task studied: copy the 
model/optimization algorithm/hyperparameters, improve them

• Even can copy the trained models and then fine-tune it



Whether to use unsupervised pretraining?

• NLP: yes, use word embeddings almost all the time

• Computer vision: not quite; unsupervised now only good for semi-
supervised learning (a few labeled data, a lot of unlabeled data)



Tuning hyperparameters



Why?

• Performance: training/test errors; reconstruction; generative ability…

• Resources: training time; test time; memory…



Two types of approaches

• Manually tune: need to understand the hyperparameters and their 
effects on the goals

• Automatically tune: need resources 



Manually tune

• Need to know: the relationship between hyperparameters and 
training/test errors and computational resources (memory and 
runtime)

• Example:  increase number of hidden units in each layer will
• Increase the model capacity

• Increase the generalization error (= test error – training error)

• Increase memory and runtime



Automatically tune

• Grid search

• Random search

• Model-based optimization (another level of optimization)
• Variables: hyperparameters

• Objective: validation errors



Debugging strategies



Difficulties

• Do not know a prior what performance/behavior to expect

• Components of the model can adapt for each other
• One components fails but the other components adapt to cover the failure



Debugging 

• Try a small dataset
• Faster, save time

• Inspect components
• Monitor histograms of activations and gradients

• Compare symbolic derivatives to numerical derivatives

• Compare training/validation/test errors
• Overfitting or underfitting?

• Focus on worst mistake
• On which data points it perform worst? Why?


