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1. (Math) Let D be the distribution over the data points (x, y), and let H be the
hypothesis class, in which one would like to find a function f that has small expected loss
L(f) by minimizing the empirical loss L̂(f). A few definitions/terminologies:

• The best function among all (measurable) functions is called Bayes hypothesis:

f∗ = arg inf
f
L(f).

• The best function in the hypothesis class is denoted as

fopt = arg inf
f∈H

L(f)

• The function that minimizes the empirical loss in the hypothesis class is denoted as

f̂opt = arg inf
f∈H

L̂(f)

• The function output by the algorithm is denoted as f̂ . (It can be different from f̂opt
since the optimization may not find the best solution.)

• The difference between the loss of f∗ and fopt is called approximation error:

εapp = L(fopt)− L(f∗)

which measures the error introduced in building the model/hypothesis class.

• The difference between the loss of fopt and f̂opt is called estimation error:

εest = L(f̂opt)− L(fopt)

which measures the error introduced by using finite data to approximate the distri-
bution D.

• The difference between the loss of f̂opt and f̂ is called optimization error:

εopt = L(f̂)− L(f̂opt)

which measures the error introduced in optimization.

• The difference between the loss of f∗ and f̂ is called excess risk:

εexc = L(f̂)− L(f∗)

which measures the distance from the output of the algorithm to the best solution
possible.



(1) Show that εexc = εapp + εest + εopt.
Comments: This means that to get better performance, one can think of: 1) building a
hypothesis class closer to the ground truth; 2) collecting more data; 3) improving the opti-
mization.
(2) Typically, when one has enough data, the empirical loss concentrates around the ex-
pected loss: there exists εcon > 0, such that for any f ∈ H, |L̂(f)−L(f)| ≤ εcon. Show that
in this case, εest ≤ 2εcon.
Comments: This means that to get small estimation error, the number of data points should
be large enough so that concentration happens. The number of data points needed to get
concentration εcon is called sample complexity, which is an important topic in learning
theory and statistics.

2. (Math) Recall that the logistic regression uses the logistic sigmoid function σ(a) =
1/(1 + exp(−a)) to model the conditional distribution p(y|x) and then apply maximum
likelihood estimation. One can use the probit function (instead of the logistic function):

Φ(a) =

∫ a

−∞
N(θ|0, 1)dθ

where N(θ|0, 1) is the standard normal distribution. Derive the negative conditional log-
likelihood loss for probit regression.
Comments: No need to simplify the expression.

3. (Coding) Generate 100 synthetic data points (x, y) as follows: x is uniform over [0, 1]10

and y =
∑10

i=1 i ∗ xi + 0.1 ∗ N(0, 1) where N(0, 1) is the standard normal distribution.
Implement full gradient descent and stochastic gradient descent, and test them on linear
regression over the synthetic data points.
Comments: The initialization, the learning rate, and the stop criterion are left for you to
explore. Think about the reasons why you use a particular strategy for these; comments in
the code on them are not required but will be appreciated.

4. (Coding) Implement the Perceptron algorithm and run it on the following synthetic data
sets in R10: pick w∗ = [1, 0, 0, . . . , 0]; generate 1000 points x by sampling uniformly at
random over the unit sphere and then removing those that have margin γ smaller than 0.1;
generate label y = sign((w∗)>x).
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