Latent Semantic Indexing: Introduction

- Analysis of term-document interaction for corpus of text documents
- Standard vector model:
 - document vector of term weights
- Goals:
 - reduce dimension of document vectors
 - uncover latent factors:
 - · document as vector of factor weights
- · uses of theory of linear algebra

Matrix formulation

- M number of terms in lexicon
- N number of documents in collection
- C the M×N (term×doc.) matrix of weights ≥ 0 (our old w_{ii})

Set-up

- C the M×N (term×doc.) matrix of non-negative weights
 - of rank r $(r \le min(M,N))$
 - documents are columns of C

consider CCT and CTC:

- · symmetric,
- share the same eigenvalues $\lambda_1, \lambda_2, \dots$
 - $-\lambda_1, \lambda_2, \dots$ are indexed in decreasing order
- $C^TC(i,j)$ measures similarity documents i and j
- $CC^T(i,j)$ measures strength co-occurrence terms i and j

Use Singular Value Decomposition (SVD)

Theorem:

M×N matrix C of rank r has a

singular value decomposition $C = U\Sigma V^T$

Where:

- U M×M matrix
 - with columns = orthogonal eigenvectors of CCT
- V N×N matrix

with columns = orthogonal eigenvectors of C^TC

- Σ M×N diagonal matrix:
 - $\Sigma(i,i) = \sqrt{\lambda_i}$ for $1 \le i \le r$
 - $\Sigma(i,j) = 0$ otherwise
- $\sqrt{\lambda_i}$ called singular values

4

Reduced Rank Approximation of C

· Approximation:

$$C_k = U\Sigma_k V^T$$
[M×N] [M×M] [M×N] [N×N]

Theorem:

 C_k is the best rank-k approximation to C under the least square fit (Frobenius) norm

$$= \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} (C(i,j) - C_k(i,j))^2}$$

6

Semantic Interpretation

- · remaining k dimensions: k factors
- View V'_k^T as a representation of documents in the k-dimensional space
- View U'_k^T as a representation of terms in the k-dimensional space
- Σ_k scales between them
- find some semantic relationship?
 - "concept space"?
 - correlating terms to find structure
 - · synonomy
 - polysomy

"people choose same main terms <20% time"

Using the Approximation

- V'_k^T as a representation of documents in a kdimensional space
- $C_k^T C_k = (U_k \Sigma_k' V_k^T)^T (U_k \Sigma_k' V_k^T)$ $= (V_k \Sigma_k'^T U_k'^T) (U_k' \Sigma_k' V_k'^T)$ $= V_k' (\Sigma_k')^2 (V_k')^T$ compares documents
- Transform query vector **q** into that space:

$$U'_k \Sigma'_k V'_k^{\mathsf{T}} = C_k => V'_k^{\mathsf{T}} = (\Sigma'_k)^{-1} (U'_k)^{\mathsf{T}} C_k$$

Then $(\Sigma'_k)^{-1} (U'_k)^{\mathsf{T}} q = q_k$

recalling $(V'_k^T)(V'_k) = (U'_k^T)(U'_k) = I$

Original LSI paper:

Deerwester, Dumais, et. al. *Indexing by Latent Semantic Analysis*Journal of the Society for Information Science, 41(6), 1990, 391-407.

Example from that paper follows

11

Deerwester, Dumais et. al. example, cont.:

Matrix V'_{k}^{T} for k=2

0.20 0.61 0.46 0.54 0.28 0.00 0.02 0.02 0.08 -0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53

13

Summary

- LSI uses SVD to get a reduced-rank and reduced-size approximation to C
- LSI can be viewed as a preprocessor for
 - query evaluation
 - clustering
- SVD computation can be costly
 - do once (or rarely)

15

