Overview

Last time:
- Vector model of document representation and ranking
- Extending models and techniques for modern search

Today:
- Using links:
 - PageRank algorithm
 - HITS algorithm

Next:
- Evaluating results of a retrieval system

Social Networks and Ranking

Generalized Social Networks
- Represent relationship between entities
 - paper cites paper
 - html page links to html page
 - A supervises B
 - A and B are friends
 - papers share an author
 - A and B are co-workers

Hypertext
- document or part of document links to other parts or other documents
 - construct documents of interrelated pieces
 - relate documents to each other
- pre-dates Web
- Web “killer app.”
How use links to improve information search?

- use **structure** to compute score for ranking
- **include more objects** to rank
 - redefines “satisfying” of query?
- **add** to the **content** of a document

◊ can deal with objects of mixed types
 - images, PDF, …

Scoring using structure

- **Idea**
 1. link to object suggests it **valuable** object
 2. **distance** between objects in graph represents degree of **relatedness**

Reachable by all in 2 links

Pursuing linking and value

- **Intuition**: when Web page **points** to another Web page, it **confers status/authority/popularity** to that page
- Find a measure that captures intuition

- Not just web linking
 - Citations in books, articles
 - Doctors referring to other doctors

Indegree

- **Indegree** = number of links into a node
- **Most obvious idea**:
 higher indegree => better node
- Doesn’t work well
- Need some feedback in system
- Leads us to Page and Brin’s **PageRank**
PageRank

• Algorithm that gave Google the leap in quality
 – link structure centerpiece of scoring

• Framework
 – Given a directed graph with n nodes
 – Assign each node a score that represents its importance in structure: PageRank: $pr(node)$

Conferring importance

Core ideas:
 - A node should confer some of its importance to the nodes to which it points
 – If a node is important, the nodes it links to should be important
 - A node should not transfer more importance than it has

Attempt 1

Refer to nodes by numbers 1, … , n (arbitrary numbering)
Let t_i denote the number of edges out of node i (outdegree)
Node i transfers $1/t_i$ of its importance on each edge out of it

Define

$$pr_{new}(k) = \sum_{i \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right)$$

Iterate until converges

Problems
 - Sinks (nodes with no edges out)
 - Cyclic behavior

Attempt 2

Random walk model
 - Attempt 1 gives movement from node to linked neighbor with probability $1/outdegree$
 - Add random jump to any node

$$pr_{new}(k) = \alpha/n + (1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right)$$

– α parameter chosen empirically

• Break cycles
• Escape from sinks
Normalized?

- Would like $\sum_{1 \leq k \leq n} (pr(k)) = 1$
- Consider $\sum_{1 \leq k \leq n} (pr_{\text{new}}(k))$

$$= \sum_{1 \leq k \leq n} (\alpha/n + (1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i)/t_i))$$

$$= \sum_{1 \leq k \leq n} (\alpha/n) + \sum_{1 \leq k \leq n} ((1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i)/t_i))$$

$$= \alpha + (1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i)/t_i)$$

$$= \alpha + (1-\alpha)\sum_{i \text{ with edge from } k \text{ to } i} (pr(i)/t_i)$$

Problem for desired normalization

- Have $\sum_{1 \leq k \leq n} (pr_{\text{new}}(k)) = \alpha + (1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i))$

- Missing $pr(i)$ for nodes with no edges from them
 - sinks!

- Solution: add n edges out of every sink
 - Edge to every node including self
 - Gives $1/n$ contribution to every node

Gives desired normalization:
If $\sum_{1 \leq k \leq n} (pr_{\text{initial}}(k)) = 1$
then $\sum_{1 \leq k \leq n} (pr(k)) = 1$

Matrix formulation

- Let E be the n by n adjacency matrix $E(i,k) = 1$ if there is an edge from node i to node k
 $= 0$ otherwise
- Define new matrix L:
 For each row i of E ($1 \leq i \leq n$)
 If row i contains $t_i > 0$ ones, $L(i,k) = (1/t_i) E(i,k), 1 \leq k \leq n$
 If row i contains 0 ones, $L(i,k) = 1/n, 1 \leq k \leq n$
- Vector pr of PageRank values defined by $pr = (\alpha/n, \alpha/n, \ldots \alpha/n)^T + (1-\alpha) L^T pr$
- has a solution representing the steady-state values $pr(k)$

Calculation

- Choose α
 - No single best value
 - Page and Brin originally used $\alpha=0.15$
- Simple iterative calculation
 - Initialize $pr_{\text{initial}}(k) = 1/n$ for each node k
 - $\sum_{1 \leq k \leq n} (pr_{\text{initial}}(k)) = 1$
 - $pr_{\text{new}}(k) = \alpha/n + (1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} pr(i)$
- Converges
 - Has necessary mathematical properties
 - In practice, choose convergence criterion
 - Stops iteration
Eigenvector Formulation

- \(pr = (\alpha/n, \alpha/n, \ldots \alpha/n)^T + (1-\alpha) L^T pr \)
- \(= (\alpha/n) J pr + (1-\alpha) L^T pr \)
- \(= (\alpha/n) J + (1-\alpha) L^T \)
- \(pr \)

- \(J \) is the matrix of all 1’s
- \(J pr = (1, 1, \ldots 1)^T \) because \(\sum_{1 \leq k \leq n} (pr(k)) = 1 \)
- \(pr \) is the principal eigenvector of \(M \)

PageRank Observations

- Can be calculated for any directed graph
- Google calculates on entire Web graph
 - query independent scoring
- Huge calculation for Web graph
 - precomputed
 - 1998 Google published:
 - 52 iterations for 322 million links
 - 45 iterations for 161 million links
- PageRank must be combined with query-based scoring for final ranking
 - Many variations
 - What Google exactly does secret
 - Can make some guesses by results

HITS

Hyperlink Induced Topic Search

- Second well-known algorithm
- By Jon Kleinberg while at IBM Almaden Research Center
- Same general goal as PageRank
- Distinguishes 2 kinds of nodes
 - Hubs: resource pages
 - Point to many authorities
 - Authorities: good information pages
 - Pointed to by many hubs

Mutual reinforcement

- Authority weight node \(j \): \(a(j) \)
 - Vector of weights \(a \)
- Hub weight node \(j \): \(h(j) \)
 - Vector of weights \(h \)
- Update:
 \[a_{\text{new}}(k) = \sum_{i \text{ with edge from } i \text{ to } k} h(i) \]
 \[h_{\text{new}}(k) = \sum_{j \text{ with edge from } k \text{ to } j} a(j) \]
Mutual reinforcement

- Authority weight node j: \(a(j) \)
 - Vector of weights \(a \)
- Hub weight node j: \(h(j) \)
 - Vector of weights \(h \)

Update:

\[
\begin{align*}
\text{a}_{\text{new}}(k) &= \sum \text{i with edge from i to } k (h(i)) \\
\text{h}_{\text{new}}(k) &= \sum \text{j with edge from } k \text{ to } j (a(j))
\end{align*}
\]

Matrix formulation

Steady state:

\[
\begin{align*}
a &= E^T h \\
h &= E a
\end{align*}
\]

Interpretation?

Look inside

- \(E^T(i,k) \) 1 where \(k \rightarrow i \)
- \(E(k,j) \) 1 where \(k \rightarrow j \)
- \(E^T(k,j) \) 1 where \(j \rightarrow k \)
- Row i of \(E^T \):
 1’s where \(k \rightarrow i \)
- Column j of \(E^T \):
 1’s where \(k \rightarrow j \)
- \(E^T(i,j) \) is number of notes pointing to both i and j
- Row i of \(E \):
 1’s where \(i \rightarrow k \)
- Column j of \(E^T \):
 1’s where \(j \rightarrow k \)
- \(EE^T(i,j) \) is number of notes pointed to by both i and j
Matrix formulation

Steady state:
\[a = E^T h \]
\[h = E a \]

Interpretation:
- \(E^T E(i,j) \): number of nodes pointing to both node i and node j
 - "Co-citation"
- \(EE^T(i,j) \): number of nodes pointing to both node i and node j
 - "Bibliographic coupling"

Iterative Calculation

\[a = h = (1, \ldots, 1)^T \]

While (not converged) \{
\[a_{\text{new}} = E^T h \]
\[h_{\text{new}} = E a \]
\[a = a_{\text{new}} / \|a_{\text{new}}\| \quad \text{normalize to unit vector} \]
\[h = h_{\text{new}} / \|h_{\text{new}}\| \quad \text{normalize to unit vector} \]
\}

Provable convergence by linear algebra

Use of HITS

original use after find Web pages satisfying query:

1. Retrieve documents satisfy query and rank by term-based techniques
2. Keep top c documents: root set of nodes
 a) c a chosen constant - tunable
3. Make base set:
 a) Root set
 b) Plus nodes pointed to by nodes of root set
 c) Plus nodes pointing to nodes of root set
4. Make base graph: base set plus edges from Web graph between these nodes
5. Apply HITS to base graph

Results using HITS

- Documents ranked by authority score \(a(\text{doc}) \) and hub score \(h(\text{doc}) \)
 - Authority score primary score for search results
- Heuristics:
 - delete all links between pages in same domain
 - Keep only pre-determined number of pages linking into root set (~200)
- Findings (original paper)
 - Number iterations in original tests ~50
 - most authoritative pages do not contain initial query terms
Observations

- HITS can be applied to any directed graph
- Base graph much smaller than Web graph
- Kleinberg identified bad phenomena
 - Topic diffusion: generalizes topic when expand root graph to base graph
 - example: want compilers - generalized to programming

PageRank and HITS

- designed independently around 1997
- indicates time was ripe for this kind of analysis
- lots of embellishments by others

Revisit: How use links in ranking documents?

- use structure to compute score for ranking
 - PageRank, HITS
- include more objects to rank
 - saw in use of HITS

➤ use anchor text (HTML)
 - anchor text labels link
 - include anchor text
 - as text of document pointed to

Using anchor text

“homework” may not occur in content of doc b

<table>
<thead>
<tr>
<th>Terms in doc b for building index:</th>
</tr>
</thead>
<tbody>
<tr>
<td>homework: anchor</td>
</tr>
<tr>
<td>problem: title 1</td>
</tr>
<tr>
<td>set: title 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>doc a</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>doc b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Set</td>
</tr>
<tr>
<td>homework</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Summary

- Link analysis
 - a principal component of ranking by modern Web search engines
 - must be combined with content analysis
- Extend document content with link info
 - anchor text
 - text of URLs
 - e.g. princeton.edu, aardvarksportsshop.com
- Expand set of satisfying docs using links
 - less often used

General Framework

- Have set of n features (aka signals) to use in determining ranking score
 - Features depend on query:
 - vector $\Psi(d,q)$ of feature values f_i for doc d_i, query q
 - e.g. tf.idf score is feature
 - Features are conditioned to be comparable
- Have parameterized function to combine signals
 - simple: linear $\alpha_0 + \sum_{i=1}^n \alpha_i f_i$
 - α_i are adjustable weights - how choose?
 - intuition
 - experimentation
 - machine learning

Ranking documents w.r.t. query

Machine Learning

Many possibilities – overview of one

Ordinal Regression Model

- Goal: get comparison of docs correct
- capture goal
 - Let ω represent vector $(\alpha_1, \ldots, \alpha_n)$
 - want $\omega^T \Psi(d_i,q) - \omega^T \Psi(d_j,q) > 0$ if and only if d_i more relevant than d_j for query q
 - find ω that works
- techniques train on known correct data:
 - humans rank a set of documents for various queries