
1

1

Using and storing
the index

2

Review: Inverted Index
•  For each term, keep list of document

entries, one for each document in which
it appears: a postings list
– Document entry is list of positions at which

term occurs and attributes for each
occurrence: a posting

•  Keep summary term information
•  Keep summary document information

meta-data

3

Consider “advanced search” queries

Content Coordination
•  Phrases
•  Numeric range
•  NOT
•  OR

Document Meta-data
• Language
• Geographic region
• File format
• Date published
• From specific domain
• Specific licensing rights
• Filtered by “safe search”

Issue of efficient retrieval
 4

Basic retrieval algorithms

•  One term
•  AND of several terms
•  OR of several terms
•  NOT term
•  proximity

2

5

Basic postings list processing:
Merging posting lists

•  Have two lists must coordinate
– Find shared entries and do “something”
– “something” changes for different

operations
•  Set operations UNION? INTERSECTION?

DIFFERENCE? …
– Filter with document meta-data as process

6

Basic retrieval algorithms
•  One term:

–  look up posting list in (inverted) index
•  AND of several terms:

–  Intersect posting lists of the terms: a list merge
•  OR of several terms:

–  Union posting lists of the terms
–  eliminate duplicates: a list merge

•  NOT term
–  If terms AND NOT(other terms), take a difference
–  a list merge (similar to AND)

•  Proximity
–  a list merge (similar to AND)

7

Merging two unsorted lists

•  Read 2nd list over and over - once for each
entry on 1st list
–  computationally expensive

time O(|L1|*|L2|) where |L| length list L

•  Build hash table on entry values;
 insert entries of one list, then other;
 look for collisions

–  must have good hash table
–  unwanted collisions expensive
–  often can’t fit in memory: disk version

•  Sort lists; use algorithm for sorted lists
–  often lists on disk: external sort
–  can sort in O(|L| log |L|) operations

X

8

Sorted lists
•  Lists sorted by some identifier

–  same identifier both lists; not nec. unique
•  Read both lists in “parallel”

–  Classic list merge:
 (sorted list1 , sorted list2) ⇒ sorted set union
–  General merge: if no duplicates, get time |L1|+|L2|

•  Build lists so sorted
–  pay cost at most once
–  maybe get sorted order “naturally”

•  If only one list sorted, can do binary search of
sorted list for entries of other list
–  Must be able to binary search! - rare!

•  can’t binary search disk

3

Duplicates in sorted lists

•  Sorted on a value vi that is not unique identifier.
•  docID# identifies doc. uniquely

postings list “cat” postings list “dog”
 v1: docIDx v1: docIDx
 v2: docIDk v3: docIDz
 v4: docIDd v4: docIDu
 v4: docIDv v4: docIDd
 v4: dodIDf v4: docIDv
 v5: docIDq v4: docIDp
 v6: docIDw v7: docIDr 9 10

Keys for documents
For posting lists, entries are documents
What value is used to sort?

•  Unique document IDs
–  can still be duplicate documents
–  consider for Web when consider crawling

•  document scoring function that is
independent of query
–  PageRank, HITS authority
–  sort on document IDs as secondary key
–  allows for approximate “highest k” retrieval

•  approx. k highest ranking doc.s for a query

11

Keys within document list

Processing within document posting

•  Proximity of terms
–  merge lists of terms occurrences within same doc.

•  Sort on term position

12

Computing document score

1.  “On fly”- as find each satisfying
document

2.  Separate phase after build list of
satisfying documents

•  For either, must sort doc.s by score

4

13

Web query processing: limiting size
•  For Web-scale collections, may not process

complete posting list for each term in query
–  at least not initially

•  Need docs sorted first on global (static) quantity
–  why not by term frequency for doc?

•  Only take first k doc.s on each term list
–  k depends on query - how?
–  k depends on how many want to be able to return

– Google: 1000 max returns
–  Flaws w/ partial retrieval from each list?

–  Other limits? query size
– Google: 32 words max query size

14

Limiting size with term-based sorting
•  Can sort doc.s on postings list by score of term

–  term frequency + …

•  Lose linear merge - salvage any?
•  Tiered index:

–  tier 1: docs with highest term-based scores, sorted
by ID or global quantity

–  tier 2: docs in next bracket of score quality, sorted
–  etc.
–  need to decide size or range of brackets

•  If give up AND of query terms, can use idf too
–  only consider terms with high idf = rarer terms

