
Compression of the dictionary and posting lists 
Summary of class discussion – Part 1 

 
Remarks on Zipf’s law (covered in Section 5.1.2 of Introduction to Information 
Retrieval): 
 
General law: f i = frequency of the ith most frequent item  ∝ i-θ f1 
 
for some constant θ. (symbol ∝ denotes “is proportional” or “grows as”)  For our 
application, items are terms that appear in the documents of a collection.  This gives rise 
to the textbook’s notation cf i standing for “content frequency”.  One study gives θ of 1.5-
2.0 for this application.  The law is observed to hold for other applications with varying 
values of θ.  The text Introduction to Information Retrieval focuses on θ = 1.  (The text 
also uses a general constant c rather than cf1.) 
 
Taking logs, we have a linear relationship between log(fi )and log(i): 

log (fi ) ∝ log(f1) – θ log(i) 
 
f i could refer to either the fraction of the total number of occurrences or an actual count 
of occurrences.  If f i is the actual count of occurrences, M is the number of distinct terms 
and T is the total count of occurrences of all items, then 
 
 

       f i  ∝    ———  i-θ   . 
 
 

 
 
    (               is a well-known mathematical quantity: the order θ harmonic number of M.) 
 
 
 
Heap’s Law: 
The material covered in class is identical to Section 5.1.1 of Introduction to Information 
Retrieval. 
 
Dictionary compression: 
The dictionary compression we considered in class is covered in Section 5.2 of 
Introduction to Information Retrieval.   
 
We can do a very rough estimate of the size of a modern Google dictionary from the size 
of the dictionary of the early Google in 1998.  To apply Heap’s law, we need the number 
of tokens in each collection.  We don’t have this information, but we’ll substitute the size 
in bytes of the collection and the index and just look at the growth rate.  1998 Google had 
147.8GB of documents.  The documents contained 14×106  unique terms.  In 2010, 
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Google reported that its new index structure was 100PB.  So growth has been from 
roughly 100GB to 100PB, or a factor of one million. Then Heap’s Law gives: 

M1998 = K*(T1998)β  and M2010 = K*(T2010)β ≈ K*(T1998 *106)β  
assuming that K and β have not changed in 22 years.  Empirically, β is about 0.5, giving  

M2010 ≈  103 * K*(T1998 )β =  103 * M1998 = 103 * (14 *  106)  
Thus we estimate a dictionary of 14 billion terms.   
 
Using this estimate of dictionary size and using these values: 

1 byte per character 
10 characters on average per term (in class I used 8) 
5-byte pointers into the character string of terms 
8-byte pointers to the postings lists 

compressing the dictionary using one long string of terms and pointers into the string 
requires approximately  (14×109) × (5 + 10 + 8) =   322 GB.   
Using blocked storage with blocking size k=4 eliminates 3 out of every 4 pointers into 
the character string and adds 1 byte for term length to every term in the string.  This gives  
(14×109) × (10 + 1 + 8)  +  ⎡(14×109)/4⎤ ×  5  ≈   284 GB  
Compare this to the (14 ×109) × (20 +8) =  392  GB of an array of term entries with 20 
bytes allocated per term or to the (14 ×109) × (30 + 8 ) =  532 GB of an array with 30 
bytes allocated per term.   
Note that the above analysis includes the space for the postings list pointers, which I 
ignored in class since it does not change. 
 
 


