COS 426 : Precept 5
Working with Half-Edge
Agenda

• How to tackle implementation of more advanced features

• Specific discussion
 • Truncate
 • Extrude
 • Triangle Subdivision
 • Bevel(?)
 • Quad Subdivision(?)
How do I start?

• Some of the operations are tricky to implement!
• Think locally - independence of operations
 • Modifying a vertex/edge/face should not influence other primitives
• Start small
 • Just work on one primitive at a time
• Decouple topology and geometry
 • What are necessary topological changes?
 • What are necessary geometrical changes?
 • Apply geometrical change after topological
Caution is advised

• Need to think ahead
 • What data might change?
 • Do you need to store it beforehand?
• Pen and paper!
 • Draw things out, make sure you understand what is happening
• Count!
 • After applying your operation how many new vertices you expect to see?
Truncate

• Corners of the shape are cutoff

• Main primitive
 • Vertex

• How many new vertices?
 • +2 per vertex

• How many new faces?
 • +1 per vertex
Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face
Truncate - topology

- Start locally - just consider single vertex
- Need to add two new vertices, and a single new face

Those were only topological changes! New blue vertices should be simply put at the location of the green one!
Truncate - geometry

- We need to move vertices along halfedges
 - You may want to store the respective offset vectors per vertex before hand
 - As you modify one vertex lengths of edges will change!
Extrude

• Each face is moved along its normal, with new faces stitched to original face position

• Main primitive
 • Face

• How many new vertices?
 • \(+n \) per \(n \)-gon

• How many new faces?
 • \(+n \) per \(n \)-gon
Extrude - topology

• Again, following figures are for illustration only, new vertices should be added at a location of the old ones!
Extrude - topology

• Extrude is bit harder - you need to perform adding new geometry and relinking manually.

• Desired:
Extrude - topology

- Let’s change notation a bit, introduce old and new vertices
Extrude - topology

- Let's change notation a bit, introduce old and new vertices

\[n_{v_i} = \text{splitEdgeMakeVert}(o_{v_i}, o_{v_{i+1}}, 0); \]
Extrude - topology

nf_i = splitFaceMakeEdge();

nf_0, nf_1, nf_2, nf_3

ov_0, ov_1, ov_2, ov_3

nv_0, nv_1, nv_2, nv_3
Extrude - topology

Want to connect up the new vertices

\[\text{nf}_5 = \text{splitFaceMakeEdge}(f, \text{nv}_0, \text{nv}_3); \]
Extrude - topology

Want to delete old edge

he₄ = old_halfedges[0];

joinFaceKillEdgeSimple(he₆);

Should be stored before hand

f

nv₃

he₅

he₂

nv₄

he₄

he₁

he₃

nf₅

nf₀

he₆

he₀

ov₃

ov₀
Extrude - geometry

- Actually, very simple
- Move each nv_i by $\text{factor} \times f.\text{normal}$
Triangle Topology

- Each face becomes 4 faces, by splitting all edges in half
- Assumes all triangles!
 - Call your Filters.triangulate();
- Main primitive
 - Face
- How many new vertices?
 - +1 per edge
- How many new faces?
 - +3 per face
TriTop - topology

• Need to split all edges!

• Create list of half edges
 • Half of them, when splitting halfedge, opposite will also be split

• Join new vertices around a face
 • Determine whether a vertex is old or new by index in vertices array
 • All new will be added to the end of the array!
TriTop - topology

- SplitEdge for each half edge in pre-computed list
- SplitFace per each face, joining new vertices
TriTop - geometry

• None - we’re done!

• For Loop Subdivision - store array of new positions for each vertex, where you will write positions calculated according to weight rules

• After done with topology, update positions!

\[\beta = \begin{cases} \frac{3}{8n} & n > 3 \\ \frac{3}{16} & n = 3 \end{cases} \]
Optional features

• Bevel

• Quad Subdivision

• We will just gloss over those
Bevel

- Let's think about required topology.

Each vertex becomes a face

Each edge becomes a face
Bevel topology

Start with truncate

Cut a triangle

Relink original edge
Bevel - topology

- Select half edges that join truncated points
- Caution when selecting half-edges to perform split
 - Make sure you’re not double counting
- Moving an edge requires manual relinking
Bevel - geometry

- All new vertices are at location of the respective original vertex
- Can move them towards the centroid of the main face
Quad Topology

- n-gon to quad split
 - Split each edge (SplitEdge)
 - Join 2 new vertices (SplitFace)
 - Split newly create edge (SplitEdge)
 - Join rest of new vertices (SplitFace)
 - Move to interior vertex to centroid location
Quad Topology

Start

SplitEdge

SplitFace

SplitEdge

SplitFace

Move
Quad Subdivision

- Three classes
 - Old vertices
 - Midpoints
 - Centroids