COS426 Precept3

Image Processing
Presented by: Linguang Zhang
Morph

• Basic concepts
 • warp the background image to the foreground image
 • alpha = 0: show background
 • alpha = 1: show foreground
 • alpha is the blending factor / timestamp

• General approach
 • specify correspondences (morphLines.html)
 • create an intermediate image with interpolated correspondences (alpha)
 • warp the background image to the intermediate image
 • warp the foreground image to the intermediate image
 • blend using alpha
General approach

In our case, correspondences are morph lines.
Morph

GenerateAnimation(Image_0, L_0[...], Image_1, L_1[...])
begin
 foreach intermediate frame time t do
 for i = 1 to number of line pairs do
 L[i] = line t-th of the way from L_0 [i] to L_1 [i]
 end
 Warp_0 = WarplImage(Image_0, L_0, L)
 Warp_1 = WarplImage(Image_1, L_1, L)
 end
 foreach pixel p in FinalImage do
 Result(p) = (1-t) Warp_0 + t Warp_1
 end
end
Warp Image

For each pixel X in the destination

$DSUM = (0,0)$

$weightsum = 0$

For each line P_iQ_i

- calculate u,v based on P_iQ_i
- calculate X'_i based on u,v and $P_i'Q_i'$
- calculate displacement $D_i = X'_i - X_i$ for this line
- $dist =$ shortest distance from X to P_iQ_i
- $weight = (length^p / (a + dist))^b$
- $DSUM += D_i * weight$
- $weightsum += weight$

$X' = X + DSUM / weightsum$

destinationImage(X) = sourceImage(X')
Warp Image

- \[u = \frac{(X-P)\cdot(Q-P)}{||Q-P||^2} \]
- \[v = \frac{(X-P)\cdot\text{Perpendicular}(Q-P)}{||Q-P||} \]
- \[X' = P' + u \cdot (Q' - P') + \frac{v\cdot\text{Perpendicular}(Q' - P')}{||Q'-P'||} \]
- \text{dist} = \text{shortest distance from } X \text{ to } PQ
 - 0 \leq u \leq 1: \text{dist} = |v|
 - u < 0: \text{dist} = ||X-P||
 - u > 1: \text{dist} = ||X-Q||
- \text{weight} = \left(\frac{\text{length}^p}{a+\text{dist}}\right)^b
 - we use p = 0.5, a = 0.01, b = 2
Q&A