An Introduction to Physically Based M odeling:
Differential Equation Basics

Andrew Witkin and David Bar aff
Robotics Institute
Carnegie Mdlon University

Please note: This document is (11997 by Andrew Witkin and David Baraff. This
chapter may be freely duplicated and distributed so long as no considerationis re-
ceived in return, and this copyright notice remains intact.

Differential Equation Basics

Andrew Witkin and David Baraff
School of Computer Science
Carnegie Mellon University

1 Initial Value Problems

Differential equations describe the relation between an unknown function and its derivatives. To
solvea differential equation is to find a function that satisfies the relation, typically while satisfying
some additional conditions as well. In this course we will be concerned primarily with a particular
class of problems, calleditial value problems.n a canonical initial value problem, the behavior

of the system is described by an ordinary differential equation (ODE) of the form

x = f(x,1),

where f is a known function (i.e. something we can evaluate givemdt,) x is thestateof the
system, and is x’s time derivative. Typicallyx andx are vectors. As the name suggests, in an
initial value problem we are givex(tp) = Xo at some starting tim&, and wish to followx over
time thereatfter.

The generic initial value problem is easy to visualize. ID,Z(t) sweeps out a curve that
describes the motion of a poiptin the plane. At any point the functionf can be evaluated to
provide a 2-vector, sd defines a vector field on the plane (see figure 1.) The vectwiisathe
velocity that the moving poinp must have if it ever moves through(which it may or may not.)
Think of f asdriving p from point to point, like an ocean current. Wherever we initially deposit
the “current” at that point will seize it. Whegeis carried depends on where we initially drop it, but
once dropped, all future motion is determinedfayThe trajectory swept out lythrough f forms
anintegral curveof the vector field. See figure 2.

We wrote f as a function of botkx andt, but the derivative function may or may not depend
directly on time. If it does, then not only the pojbut the the vector field itself moves, so tipe
velocity depends not only on where it is, but on when it arrives there. In that case, the defivative
depends on time itwo ways:first, the derivative vectors themselves wiggle, and second, the point
p, because it moves on a trajectorgt), sees different derivative vectors at different times. This
dual time dependence shouldn’t lead to confusion if you maintain the picture of a particle floating
through an undulating vector field.

2 Numerical Solutions
Standard introductory differential equation courses focusysnbolicsolutions, in which the func-

tional form for the unknown function is to be guessed. For example, the differential equation
X = —kXx, wherex denotes the time derivative &f is satisfied by = ekt

Bl

A Thederivative
#A function

\ oy X :f(X,t)

N forms a vector

o | o lsicd.

Vector Field

Figure 1: The derivative functiofi(x, t). defines a vector field.

Start Here

Follow the vectors...

Initial Value Problem

Figure 2. An initial value problem. Starting from a poiy, move with the velocity specified by
the vector field.

An Introduction to Physically-Based Modeling B2 Witkin/Baraff/Kass

o Simplest numerical
solution method

* Discretetime steps

* Bigger steps, bigger
errors,

X(t+ At) = x(ts + At f(x,1)

Euler's Method

Figure 3: Euler's method: instead of the true integral curve, the approximate solution follows a
polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show
how the accuracy of the solution degrades as the size of the time step increases.

In contrast, we will be concerned exclusively withmericalsolutions, in which we take dis-
cretetime stepsstarting with the initial valuex(tg). To take a step, we use the derivative function
f to calculate an approximate changexjmx, over a time intervalAt, then incremenx by Ax to
obtain the new value. In calculating a numerical solution, the derivative fundtisnregarded as
a black box: we provide numerical values foandt, receiving in return a numerical value f&r
Numerical methods operate by performing one or more of thesgative evaluationat each time
step.

2.1 Euler's Method

The simplest numerical method is called Euler's method. Let our initial value lb&r denoted by
Xo = X(tp) and our estimate of at a later timeg + h by X(tg + h), whereh is astepsizgparameter.
Euler's method simply computesty + h) by taking a step in the derivative direction,

X(tg + h) = Xg + hx(tp).

You can use the mental picture of a 2D vector field to visualize Euler's method. Instead of the
real integral curvep follows a polygonal path, each leg of which is determined by evaluating the
vector f at the beginning, and scaling by See figure 3.

Though simple, Euler's method is not accurate. Consider the case Dffartion f whose
integral curves are concentric circles. A popgoverned byf is supposed to orbit forever on
whichever circle it started on. Instead, with each Euler gtep)l move on a straight line to a circle
of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the
rate of this outward drift, but never eliminate it.

An Introduction to Physically-Based Modeling B3 Witkin/Baraff/Kass

| naccur acy:
Error turnsx(t) from a
circleinto the spiral of
7 your choice.

NNV
N=Z U

NN

\ f | nstability: off to
/ Neptune!

4

/]
o
A' [—
g

>4

/
NIV
[

Figure 4: Above: the real integral curves form concentric circles, but Euler's method always spirals
outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking
the stepsize doesn'’t cure the problem, but only reduces the rate at which the error accumulates.
Below: too large a stepsize can make Euler's method diverge.

(
!

Two Problems

|

Moreover, Euler's method can be unstable. ConsideDdunction f = —kx, which should
make the poinp decay exponentially to zero. For sufficiently small step sizes we get reasonable
behavior, but whem > 1/k, we have|Ax| > |X|, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler's method isn’t even efficient. Most numerical solution methods spend nearly all
their time performing derivative evaluations, so the computational persstepis determined by
the number of evaluations per step. Though Euler's method only requires one evaluation per step,
the real efficiency of a method depends on the size of the steps it lets you take—while preserving
accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-
quiring as many as four or five evaluations per step, can greatly outperform Euler's method because
their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler's method, we need to look more closely at
the error that the method produces. The key to understanding what's going orag/tbeseries
Assumingx(t) is smooth, we can express its value at the end of the step as an infinite sum involving
the the value and derivatives at the beginning:

) h2" h3.. hn §"x
X(to + h) = X(to) + hX(to) + Ex(to) + gx(to) tot et
As you can see, we get the Euler update formuldarbpcatingthe series, discarding all but the
first two terms on the right hand side. This means that Euler’s method would be correct only if
all derivatives beyond the first were zero, i.e.x{t) were linear. Theerror term, the difference

An Introduction to Physically-Based Modeling B4 Witkin/Baraff/Kass

between the Euler step and the full, untruncated Taylor series, is dominated by the leading term,
(h?/2)%(tp). Consequently, we can describe the errofak?) (read“Order h squared”.) Suppose

that we chop our stepsize in half; that is, we take steps of%iﬁéthough this produces only about

one fourth the error we got with a stepsizenpfve have to take twice as many steps over any given
interval. That means that the error we accumulate over an intigriat; depends linearly upoh.
Theoretically, using Euler's method we can numerically computger an intervatg to t; with as

little error as we want, by choosing a suitably snialln practice, a great many timesteps might be
required, depending on the error and the function

2.2 The Midpoint Method

If we were able to evaluateas well asx, we could acheiv® (h3) accuracy instead dd (h?) simply
by retaining one additional term in the truncated Taylor series:

2
ﬂm+hw=ﬂmrummy+%xmy+om%. 1)

Recall that the time derivativk is given by a functionf (x(t), t). For simplicity in what follows,
we will assume that the derivative functidndoes depends on time only indirectly throughso
thatx = f (x(t)). The chain rule then gives

f
X:a—X: f'f.
X

To avoid having to evaluaté’,which would often be complicated and expensive, we can approx-
imate the second-order term just in termsfofand substitute the approximation into equation 1,
leaving us withO(h3) error. To do this, we perform another Taylor expansion, this time of the
function of f,

f(xo + AX) = f(xo) + Axf/(x0) + O(AX?). 2)

We first introducex into this expression by choosing
AX = n f (Xo)
so that
h h , 2 h 2
f(Xo+ > f(X0)) = f(xo0) + > f (X0) f'(X0) + O(h%) = f(x0) + EX(tO) + O(h%),

wherexg = X(tg). We can now multiply both sides Hy (turning theO(h?) term into O(h3)) and

rearrange, yielding
2

h h
§x+om%=mum+iﬂm»—ﬂm>

Substituting the right hand side into equation 1 gives the update formula

X(tg + h) = X(tg) + h(f (Xo + g f (Xo0)).

This formula first evaluates an Euler step, then performs a second derivative evaluation at the mid-
point of the step, using the midpoint evaluation to updatdence the nammidpoint methodThe

An Introduction to Physically-Based Modeling B5 Witkin/Baraff/Kass

a. Compute an Euler step
Ax = At f(x,t)
b.Evaluatef at the midpoint

f :f(X+AX,t+At
mid 2 2

c. Takea step using the
midpoint value

X(t + At) = X(t) + At fmid

TheMidpoint M ethod

Figure 5: The midpoint method is a 2nd-order solution method. a) an euler step is computed, b) the
derivative is evaluated again at the step’s midpoint, and the second evaluation is used to calculate
the step. The integral curve—the actual solution—is shown as c.

midpoint method is correct to withi®(h®), but requires two evaluations df. See figure 5 for a
pictorial view of the method.

We don't have to stop with an error @(h®). By evaluatingf a few more times, we can
eliminate higher and higher orders of derivatives. The most popular procedure for doing this is a
method called Runge-Kutta of order 4 and has an error per st€lof). (The Midpoint method
could be called Runge-Kutta of order 2.) We won't derive the fourth order Runge-Kutta method,
but the formula for computing(ty + h) is listed below:

ki = hf(xo, to)

ky h
k» = hf — —
2 (Xo + 2,t0+2)
ko h
ks = hf —= —
3 (Xo + 2,to+2)

ks = hf(xo+ks, to+h)

1 1 1 1
t h)y = -k —k: —k —Kg.
X(to 4+ h) X0+61+32+33+6k4

3 Adaptive Stepsizes

Whatever the underlying method, a major problem lies in determing a good stepsize. Ideally, we
want to choosé as large as possible—but not so large as to give us an unreasonable amount of
error, or worse still, to induce instability. If we choose a fixed stepsize, we can only proceed as
fast as the “worst” sections of(t) will allow. What we would like to do is to varjh as we march

An Introduction to Physically-Based Modeling B6 Witkin/Baraff/Kass

forward in time. Whenever we can makdarge without incurring too much error, we should do
so. Whenrh has to be reduced to avoid excessive error, we want to do that also. This is the idea of
adaptive stepsizing: varyingover the course of solving the ODE.

Here we’'ll be present adaptive stepsizing for Euler's method. The basic idea is as follows. Lets
assume we have a given stepdizend we want to know how much we can consider changing it.

Suppose we compute two estimates Xdp + h). We compute an estimatg, by taking an
Euler step of sizé from tg to tg + h. We also compute an estimatg by takingtwo Euler steps of
sizeh/2, fromtg to tg + h. Both x, andx, differ from the true value ok(tg + h) by O(h?). That
means thak, andxy, differ from each other byD(h?). As a result, we can write that a measure of
the current erroeis

€= [Xa — Xp|

This gives us a convenient estimate to the error in taking an Euler step df.size
Suppose that we are willing to have an error of as much aé pér step, and that the current
error is only 108, Since the error goes up BS, we can increase the stepsize to

1
1074\ 2
(Tﬂ) h = 100h.

Conversely, if we currently had an error of T) and could only tolerate an error of 1%) we would
have to decrease the stepsize to
1
1074\ 2
(_) h~ 316h,

103
Adaptive stepsizing is a highly recommended technique.

4 Implementation

The ODEs we will want to solve may represent many things—for instance, a collection of masses
and springs, some rigid bodies, or a deformable object. We want to implement ODE solvers and the
models on which they operate in a way that isolates each from the internal details of the other. This
will make it possible to change solvers easily, and also make the solver code reusable. Fortunately,
this kind of modularity is not difficult to acheive, since all solvers can be expressed in terms of
a small, stereotyped set of operations. Presumably, the system of ODE-governed objects will be
embodied in a structure of some kind. The approach is to write type-specific code that operates on
this structure to perform the standard operations, then to implement solvers in terms of these generic
operations.

From the solver’s viewpoint, the system on which it operates is a black-box funttiart).
The solver needs to be able to evalufiteas required, at any values wfandt, and then to install
the updatecd andt when a time step is taken. To support these operations, the object that represents
the ODE being solved must be able to handle these requests from the solver:

e Return dim(x). Sincex andx may be vectors, the solver must know their length, to allocate
storage, perform vector arithmetic ops, etc.

e Get/seix andt. The solver must be able to install new values at the end of a step. In addition,
a multi-step method must s@tandt to intermediate values in the course of performing
derivative evaulations.

An Introduction to Physically-Based Modeling B7 Witkin/Baraff/Kass

e Evaluatef atthe currenk andt.

In an object-oriented language, these operations would naturally be implemented as generic
functions that are handled in a type-specific way. In a non-object-oriented language generic func-
tions would be faked by installing pointers to type-specific functions in structure slots, or simply by
passing the function pointers as arguments to the solver. Later on we will consider in detail how
these operations are to be implemented for specific models such as particle-and-spring systems.

References

[1] W.H. Press, B.P. Flannery, S. A. Teukolsky, and W. T. Vetterliddumerical Recipes in C
Cambridge University Press, Cambridge, England, 1988.

An Introduction to Physically-Based Modeling B8 Witkin/Baraff/Kass

