
Foundations and TrendsR© in
Computer Graphics and Vision
Vol. 4, No. 1 (2008) 1–73
c© 2009 S. Paris, P. Kornprobst, J. Tumblin and
F. Durand
DOI: 10.1561/0600000020

Bilateral Filtering: Theory and Applications

By Sylvain Paris, Pierre Kornprobst, Jack Tumblin
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Abstract

The bilateral filter is a non-linear technique that can blur an image
while respecting strong edges. Its ability to decompose an image into
different scales without causing haloes after modification has made it
ubiquitous in computational photography applications such as tone
mapping, style transfer, relighting, and denoising. This text provides
a graphical, intuitive introduction to bilateral filtering, a practical
guide for efficient implementation and an overview of its numerous
applications, as well as mathematical analysis.
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Introduction

Bilateral filtering is a technique to smooth images while preserving
edges. It can be traced back to 1995 with the work of Aurich and
Weule [4] on nonlinear Gaussian filters. It was later rediscovered by
Smith and Brady [59] as part of their SUSAN framework, and Tomasi
and Manduchi [63] who gave it its current name. Since then, the use
of bilateral filtering has grown rapidly and is now ubiquitous in image-
processing applications Figure 1.1. It has been used in various contexts
such as denoising [1, 10, 41], texture editing and relighting [48], tone
management [5, 10, 21, 22, 24, 53], demosaicking [56], stylization [72],
and optical-flow estimation [57, 74]. The bilateral filter has several qual-
ities that explain its success:

• Its formulation is simple: each pixel is replaced by a weighted
average of its neighbors. This aspect is important because it
makes it easy to acquire intuition about its behavior, to adapt
it to application-specific requirements, and to implement it.

• It depends only on two parameters that indicate the size and
contrast of the features to preserve.

• It can be used in a non-iterative manner. This makes the
parameters easy to set since their effect is not cumulative
over several iterations.
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(a) Input image (b) Output of the bilateral filter

Fig. 1.1 The bilateral filter converts any input image (a)to a smoothed version (b). It
removes most texture, noise, and fine details, but preserves large sharp edges without
blurring.

• It can be computed at interactive speed even on large images,
thanks to efficient numerical schemes [21, 23, 55, 54, 50, 71],
and even in real time if graphics hardware is available [16].

In parallel to applications, a wealth of theoretical studies [6, 7, 13,
21, 23, 46, 50, 60, 65, 66] explain and characterize the bilateral filter’s
behavior. The strengths and limitations of bilateral filtering are now
fairly well understood. As a consequence, several extensions have been
proposed [14, 19, 23].

This paper is organized as follows. Section 2 presents linear
Gaussian filtering and the nonlinear extension to the bilateral filter.
Section 3 revisits several recent, novel and challenging applications
of bilateral filtering. Section 4 compares different ways to implement
the bilateral filter efficiently. Section 5 presents several links of bilat-
eral filtering with other frameworks and also different ways to inter-
pret it. Section 6 exposes extensions and variants of the bilateral
filter. We also provide a website with code and relevant pointers
(http://people.csail.mit.edu/sparis/bf survey/).
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From Gaussian Convolution to Bilateral Filtering

To introduce bilateral filtering, we begin with a description of Gaussian
convolution in Section 2.2. This filter is simpler, introduces the notion
of local averaging, and is closely related to the bilateral filter but does
not preserve edges. Section 2.3 then underscores the specific features
of the bilateral filter that combine smoothing with edge preservation.
First, we introduce the notation used throughout this paper.

2.1 Terminology and Notation

For simplicity, most of the exposition describes filtering for a gray-
level image I although every filtering operation can be duplicated for
each component of a color image unless otherwise specified. We use the
notation Ip for the image value at pixel position p. Pixel size is assumed
to be 1. F [I] designates the output of a filter F applied to the image I.
We will consider the set S of all possible image locations that we name
the spatial domain, and the set R of all possible pixel values that we
name the range domain. For instance, the notation

∑
p∈S denotes a

sum over all image pixels indexed by p. We use | · | for the absolute
value and || · || for the L2 norm, e.g., ||p − q|| is the Euclidean distance
between pixel locations p and q.

4



2.2 Image Smoothing with Gaussian Convolution 5

2.2 Image Smoothing with Gaussian Convolution

Blurring is perhaps the simplest way to smooth an image; each out-
put image pixel value is a weighted sum of its neighbors in the input
image. The core component is the convolution by a kernel which is the
basic operation in linear shift-invariant image filtering. At each output
pixel position it estimates the local average of intensities, and corre-
sponds to low-pass filtering. An image filtered by Gaussian Convolution
is given by:

GC [I]p =
∑
q∈S

Gσ(||p − q||) Iq, (1)

where Gσ(x) denotes the 2D Gaussian kernel (see Figure 2.1):

Gσ(x) =
1

2πσ2 exp
(

− x2

2σ2

)
. (2)

Gaussian filtering is a weighted average of the intensity of the
adjacent positions with a weight decreasing with the spatial distance to
the center position p. The weight for pixel q is defined by the Gaussian
Gσ(||p − q||), where σ is a parameter defining the neighborhood size.
The strength of this influence depends only on the spatial distance
between the pixels and not their values. For instance, a bright pixel has
a strong influence over an adjacent dark pixel although these two pixel
values are quite different. As a result, image edges are blurred because
pixels across discontinuities are averaged together (see Figure 2.1).

The action of the Gaussian convolution is independent of the image
content. The influence that a pixel has on another one depends only
their distance in the image, not on the actual image values.

Remark. Linear shift-invariant filters such as Gaussian convolution
(Equation (1)) can be implemented efficiently even for very large σ

using the Fast Fourier Transform (FFT) and other methods, but these
acceleration techniques do not apply to the bilateral filter or other
nonlinear or shift-variant filters. Fortunately, several fast numerical
schemes were recently developed specifically for the bilateral filter (see
Section 4).
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Fig. 2.1 Example of Gaussian linear filtering with different σ. Top row shows the profile of a
1D Gaussian kernel and bottom row the result obtained by the corresponding 2D Gaussian
convolution filtering. Edges are lost with high values of σ because averaging is performed
over a much larger area.

2.3 Edge-preserving Filtering with the Bilateral Filter

The bilateral filter is also defined as a weighted average of nearby pixels,
in a manner very similar to Gaussian convolution. The difference is
that the bilateral filter takes into account the difference in value with
the neighbors to preserve edges while smoothing. The key idea of the
bilateral filter is that for a pixel to influence another pixel, it should
not only occupy a nearby location but also have a similar value.

The formalization of this idea goes back in the literature to
Yaroslavsky [77], Aurich and Weule [4], Smith and Brady [59] and
Tomasi and Manduchi [63]. The bilateral filter, denoted by BF [ · ], is
defined by:

BF [I]p =
1

Wp

∑
q∈S

Gσs(||p − q||) Gσr(|Ip − Iq|) Iq, (3)

where normalization factor Wp ensures pixel weights sum to 1.0:

Wp =
∑
q∈S

Gσs(||p − q||) Gσr(|Ip − Iq|). (4)

Parameters σs and σr will specify the amount of filtering for the image
I. Equation (3) is a normalized weighted average where Gσs is a spatial
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Input

Spatial weight Range weight

Result

Multiplication of range
and spatial weights

Bilateral filter weights at the central pixel

}
Fig. 2.2 The bilateral filter smooths an input image while preserving its edges. Each pixel
is replaced by a weighted average of its neighbors. Each neighbor is weighted by a spatial
component that penalizes distant pixels and range component that penalizes pixels with a
different intensity. The combination of both components ensures that only nearby similar
pixels contribute to the final result. The weights shown apply to the central pixel (under
the arrow). The figure is reproduced from [21].

Gaussian weighting that decreases the influence of distant pixels, Gσr

is a range Gaussian that decreases the influence of pixels q when their
intensity values differ from Ip. Figure 1.1 shows a sample output of the
bilateral filter and Figure 2.2 illustrates how the weights are computed
for one pixel near an edge.

2.3.1 Parameters

The bilateral filter is controlled by two parameters: σs and σr. Figure 2.3
illustrates their effect.

• As the range parameter σr increases, the bilateral filter gradu-
ally approximates Gaussian convolution more closely because
the range Gaussian Gσr widens and flattens, i.e., is nearly
constant over the intensity interval of the image.

• Increasing the spatial parameter σs smooths larger features.
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Fig. 2.3 The bilateral filter’s range and spatial parameters provide more versatile control
than Gaussian convolution. As soon as either of the bilateral filter weights reaches values
near zero, no smoothing occurs. As a consequence, increasing the spatial sigma will not blur
an edge as long as the range sigma is smaller than the edge amplitude. For example, note
the rooftop contours are sharp for small and moderate range settings σr, and that sharpness
is independent of the spatial setting σs. The original image intensity values span [0,1].

In practice, in the context of denoising, Liu et al. [41] show that adapt-
ing the range parameter σr to estimates of the local noise level yields
more satisfying results. The authors recommend a linear dependence:
σr = 1.95 σn, where σn is the local noise level estimate.

An important characteristic of bilateral filtering is that the weights
are multiplied: if either of the weights is close to zero, no smoothing
occurs. As an example, a large spatial Gaussian coupled with narrow
range Gaussian achieves limited smoothing despite the large spatial
extent. The range weight enforces a strict preservation of the contours.

2.3.2 Computational cost

At this stage of the presentation, skeptical readers may have already
decided that the bilateral filter is an unreasonably expensive algorithm
to compute when the spatial parameter σs is large, as it constructs
each output pixel from a large neighborhood, requires the calculation
of two weights, their products, and a costly normalizing step as well.
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In Section 4 we will show some efficient approaches to implement the
bilateral filter.

2.3.3 Iterations

The bilateral filter can be iterated. This leads to results that are
almost piecewise constant as shown in Figure 2.4. Although this yields
smoother images, the effect is different from increasing the spatial
and range parameters. As shown in Figure 2.3, increasing the spatial
parameters σs has a limited effect unless the range parameter σr is also
increased. Although a large σr also produces smooth outputs, it tends
to blur the edges whereas iterating preserves the strong edges such as
the border of the roof in Figure 2.4 while removing the weaker details
such as the tiles. This type of effect is desirable for applications such
as stylization [72] that seek to abstract away the small details, while
computational photography techniques [5, 10, 21] tend to use a single
iteration to be closer to the initial image content.

2.3.4 Separation

The bilateral filter can split an image into two parts: the filtered image
and its “residual” image. The filtered image holds only the large-scale
features, as the bilateral filter smoothed away local variations without
affecting strong edges. The residual image, made by subtracting the
filtered image from the original, holds only the image portions that
the filter removed. Depending on the settings and the application,

Fig. 2.4 Iterations: the bilateral filter can be applied iteratively, and the result progressively
approximates a piecewise constant signal. This effect can help achieve a limited-palette,
cartoon-like rendition of images [72]. Here, σs = 8 and σr = 0.1.
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Fig. 2.5 Separation: The residual image holds all input components (a) removed by the
bilateral filter (b), and some image structure is visible here (c). For denoising tasks, the
ideal residual image would contain only noise, but here the σr setting was large enough
to remove some fine textures that are nearly indistinguishable from noise, and still yields
acceptable results for many denoising tasks.

this removed small-scale component can be interpreted as noise or
texture, as shown in Figure 2.5. Applications such as tone management
and style transfer extend this decomposition to multiple layers (see
Section 3).

☛ To conclude, bilateral filtering is an effective way to smooth
an image while preserving its discontinuities (see Sections 3.1 and
3.5) and also to separate image structures of different scales (see
Section 3.2). As we will see, the bilateral filter has many applications,
and its central notion of assigning weights that depend on both space
and intensity can be tailored to fit a diverse set of applications (see
Section 6).

Remark. The reader may know that the goal of edge-preserving
image restoration has been addressed for many years by partial differ-
ential equations (PDEs), and one may wonder about their relationship
with bilateral filters. Section 5.1 will explore those connections in detail.



3
Applications

This section discusses the uses of the bilateral filter for a variety of
applications:

• Denoising (Section 3.1): This is the original, primary goal of
the bilateral filter, where it found broad applications that
include medical imaging, tracking, movie restoration, and
more. We discuss a few of these, and present a useful exten-
sion known as the cross-bilateral filter.

• Texture and Illumination Separation, Tone Mapping,
Retinex, and Tone Management (Section 3.2): Bilateral fil-
tering an image at several different settings decomposes
that image into large-scale/small-scale textures and features.
These applications edit each component separately to adjust
the tonal distribution, achieve photographic stylization, or
match the adjusted image to the capacities of a display
device.

• Data Fusion (Section 3.4): These applications use bilateral
filtering to decompose several source images into compo-
nents and then recombine them as a single output image that
inherits selected visual properties from each of the source
images.

11
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• 3D Fairing (Section 3.5): In this counterpart to image denois-
ing, bilateral filtering applied to 3D meshes and point clouds
smooths away noise in large areas and yet keeps all corners,
seams, and edges sharp.

• Other Applications (Section 3.6): New applications are
emerging steadily in the literature; we highlight several new
trends indicated by recently published papers.

3.1 Denoising

One of the first roles of bilateral filtering was image denoising.
Later, the bilateral filter became popular in the computer graphics
community because it is edge preserving, easy to understand and set
up, and because efficient implementations were recently proposed (see
Section 4).

The bilateral filter has become a standard interactive tool for image
denoising. For example, Adobe Photoshop R© provides a fast and sim-
ple bilateral filter variant under the name “surface blur” (Figure 3.1).
Instead of Gaussian functions, it uses a square box function as its spa-
tial weight, and a “tent” (linear) function as the range weight. Unlike
Gaussian convolution that smooths images without respecting their
visual structures, the bilateral filter preserves the object contours and
produces sharp results. The surface blur tool is often used by portrait
photographers to smooth skin while preserving sharp edges and details
in the subject’s eyes and mouth.

Fig. 3.1 Denoising using the “surface blur” filter from Adobe Photoshop R©: We added
noise (b) to the input image (a) and applied the “surface blur” filter. As the input image
was corrupted by noise, some signal loss is inevitable, but the filtered version is significantly
improved.
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Qualitatively, the bilateral filter represents an easy way to decom-
pose an image into a cartoon-like component and a texture one. This
cartoon-like image is the denoised image which can be used in several
applications as shown in this section. Qualitatively, such a decomposi-
tion could be obtained by any simplifying filter. But this decomposition
is not trivial from a mathematical perspective if one considers the math-
ematical structure of images. In this respect, we refer to Meyer [44],
Vese and Osher [67], Aujol et al., [3] for more details about approaches
dedicated to precise texture-cartoon decompositions.

The cartoon-like effect can also be a drawback depending on the
application. Buades et al. [14] have shown that although bilateral filter-
ing preserves edges, the preservation is not perfect and some edges are
sharpened during process, introducing an undesirable “staircase effect”.
We discuss this effect in more detail in Section 6.1.3. In summary, the
bilateral filter can be the right approach for many applications, but it
is not always the best solution nor the best denoising filter available.

As a final comment, the bilateral filter is related to several
approaches and frameworks proposed in the literature. We revisit the
most important ones in Section 5. These analogies are interesting to
notice, as they give theoretical foundations to bilateral filtering and
show alternative formulations.

3.1.1 Medical Imagery

In the domain of medical imagery, Wong et al. [73] improved the struc-
ture preservation abilities of the bilateral filter by explicitly describing
the structure with an additional weight, one that depends on the local
shape and orientation of the sensed image data.

3.1.2 Videos

Bennett and McMillan [10] show that bilateral filtering can be used for
videos. In this context, the bilateral filter is applied along the time axis,
that is, pixels at the same location in successive frames are averaged
together. The fact that the bilateral filter does not average together
pixels of different colors prevents mixing data from different objects
that appear at the same location but at different times. For instance,
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(a) Input (b) Naive histogram
stretching

(c) Output of Bennett and
McMillan [9]

Fig. 3.2 Bennett and McMillan [10] describe how to combine spatial and temporal bilateral
filterings to achieve high-quality video denoising and exposure correction. Figure reproduced
from Bennett and McMillan [10].

if a red ball passes in front of green tree, the ball and tree pixels are
not mixed together, thanks to the range weight of the bilateral filter.
However, pixels that change color often, for instance due to a rapidly
moving object, may not have any similar neighbors along the time axis.
Bennett and McMillan compensate for this case by looking for spatial
neighbors when there are not enough temporal similar pixels. Figure 3.2
shows sample results.

3.1.3 Orientation Smoothing

Paris et al. [49] use the bilateral filter to smooth the 2D orientation
field computed from optical measurements for hairstyle modeling. Their
measuring scheme yields a per-pixel evaluation of the local orientation,
but these measures are noisy and at times ambiguous due to the com-
plex nature of hair images. Paris et al. evaluated the success of their
measurements at pixel p using the variance at Vp and incorporated it
into their filter. In Paris’ setup, several illumination conditions offer
orientation estimates for each pixel, and they use the maximum dif-
ference Γ among all these estimates. As the orientation angle α varies
cyclically between 0 and π, they map their averaging onto a complex
exponential: α ∈ [0,π[ �→ exp

(
2iα

) ∈ C, leading to the filter:

ρexp(2iFParis(α)p)

=
∑
q

Gσs(||p − q||) GσV (Vp/Vq) GσΓ

(
Γ(p,q)

)
exp(2iαq) (5)
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(a) Zoom on input image (b) Orientations before bilateral filtering (c) Orientations after bilateral filtering

Fig. 3.3 Paris et al. [49] smooth their orientation measurements using a variant of bilateral
filtering mapped to the complex plane C. Figure reproduced from Paris et al. [49].

This filter acts upon orientation mapped to the complex plane.
Although Paris’ application needs only the phase argument of the
result and discards the amplitude ρ, if needed it could act as the stan-
dard deviation in the scalar case Watson, [70]. This filter illustrates
how bilateral filtering can adapt to incorporate application-specific
knowledge.

3.1.4 Discussion and Practical Consideration

Denoising usually relies on small spatial kernels σs and the range sigma
σr is usually chosen to match the noise level.

The bilateral filter might not be the most advanced denoising tech-
nique but its strength lies in its simplicity and flexibility. The weights
can be adjusted to take into account any metric on the difference
between two pixels and information about the reliability of a given
pixel can be included by reducing the weights assigned to it.

In the case of “salt-and-pepper” or impulse noise, the bilateral filter
may need to mollify the input image before use. Though the noise may
be sparse, the affected pixels’ intensity values may span the entire image
range (e.g., [0–1]), and their values might be too different from their
neighbors to be filtered out. To mollify these images, compute the range
Gaussian weights on a median-filtered version of the image [21]. If M

describes median filtering, this gives:

BF [I]p =
1

Wp

∑
q∈S

Gσs(||p − q||) Gσr(|M [I]p − M [I]q|) Iq, (6)
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Wp =
∑
q∈S

Gσs(||p − q||) Gσr(|M [I]p − M [I]q|). (7)

This practice is commonplace in robust statistics: users apply a
very robust estimator such as the median filter first to obtain a suitable
initial estimate, then apply a more precise estimator (the bilateral filter)
to find the final result.

3.2 Contrast Management

Bilateral filtering has been particularly successful as a tool for con-
trast management tasks such as detail enhancement or reduction.
Oh et al. [48] describe how to use the bilateral filter to separate an
image into a large-scale component and a small-scale component by
subtracting filtered results. With this decomposition, they edit texture
in a photograph. Several earlier nonlinear coarse/fine decompositions
were already in use in various local tone mapping operators (e.g., Stock-
ham [62], Chiu et al. [17], Schlick [58], Pattanaik et al. [51], Tumblin
and Turk [64]) but Durand and Dorsey [21] were the first to apply
the method using the bilateral filter. Elad [24] followed the same strat-
egy to estimate the illumination and albedo of the photographed scene.
Bae et al. [5] extended this approach to manipulate the look of a photo-
graph, and Fattal et al. [25] describe a multi-scale image decomposition
that preserves edges and allows for combining multiple images to reveal
object details. We describe these applications in the next sections.

3.2.1 Texture and Illumination Separation

In the context of image-based modeling, Oh et al. [48] used the
structure-removal aspect of the bilateral filter. By using a sufficiently
large range parameter σr, the bilateral filter successfully removes the
variations due to reflectance texture while preserving larger disconti-
nuities stemming from illumination changes and geometry. Their tech-
nique is motivated by the fact that illumination variations typically
occur at a larger scale than texture patterns, as observed by Land in
his “Retinex” theory of lightness perception [39, 38]. To extract the illu-
mination component, they derive a variant of the iterated bilateral filter
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for which the initial image is always filtered. The successive estimates
are used only to refine the range weight:

B̃Fi+1[I]p =
1

Wp

∑
q∈S

Gσs(||p − q||) Gσr

(
B̃Fi[I]p − B̃Fi[I]q

)
Iq,

with B̃F0[I] = I.

In addition, because a depth estimate is available at each image pixel,
they adapt the spatial Gaussian size and shape to account for depth
foreshortening. At each pixel they estimate a tangent plane to the local
geometry, and choose an oriented spatial Gaussian that is isotropic
in this tangent plane, which results in an anisotropic Gaussian once
projected onto the image plane.

3.2.2 Tone Mapping

Durand and Dorsey [21] show that the use of bilateral filtering can be
extended to isolate small-scale signal variations including texture and
also small details of an image. They demonstrate this property to con-
struct a tone mapping process whose goal is to compress the intensity
values of an high-dynamic-range image to fit the capabilities of a low-
dynamic-range display. In accordance with earlier local tone mapping
operators, they note that naive solutions such as uniform scaling or
gamma reductions to compress contrasts yield unsatisfactory results
because the severe reductions needed for high contrast features cause
subtle textures and scene details to vanish. While earlier tone map-
ping operators used multi-scale filter banks, wavelets, nonlinearities
modeled on neural processes, and diffusion PDEs to separate visually
compressible and incompressible components of log luminance, Durand
and Dorsey used the bilateral filter for a fast, much simpler and visually
pleasing result. They apply the bilateral filter on the log-intensities of
the HDR image, scale down uniformly the result, and add back the fil-
ter residual, thereby ensuring that the small-scale details have not been
compressed during the process. Some earlier methods such as Pattanaik
et al. [51] used weighted multi-scale decompositions that model psy-
chophysical models of visual appearance or relied on user interaction
to achieve best-looking results (e.g., Jobson et al. [32], Tumblin and
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Fig. 3.4 Tone Mapping: Direct display of an HDR image (a) is not satisfying because
over- and under-exposed areas hide image features. Contrast compression maps all scene
intensities to the display, but details in clouds and in the city below the horizon are barely
visible (b). Isolating the details using Gaussian convolution brings back the details, but
incurs halos near contrasted edges (e.g., near the tree silhouettes) (c). Durand and Dorsey
use the bilateral filter to isolate the small variations of the input image without incurring
halos (d). Figure reproduced from Durnad and Dorsey [21].

Turk [64]), but as shown in Figure 3.4 HDR images tone-mapped with
Durand and Dorsey’s technique are less difficult to achieve yet maintain
a plausible, visually pleasing appearance.

3.2.3 Retinex

Elad [24] proposes a different interpretation of the tone mapping tech-
nique of Durand and Dorsey using the Retinex theory of Edwin Land
that seeks a separation of images into illumination and albedo. Under
the assumption that scene objects are “mostly-diffuse” reflectors that
do not emit light, illumination values are greater than the measured
intensities because objects always absorb part of the incoming light.



3.2 Contrast Management 19

Elad adapts the bilateral filter to ensure that the filtered result fulfills
this requirement and forms an upper envelope of the image intensities.
He replaces the range weight Gσr by a truncated Gaussian H × Gσr ,
where H is a step function whose value is 1 for non-negative inputs and
is 0 otherwise. As a consequence, at any given pixel p, the local aver-
aging includes only values greater than intensity at p and guarantees
a filtered value at or above the local image intensity.

3.2.4 Tone Management

Bae et al. [5] build upon the separation between the large scale and the
small scale offered by the bilateral filter, and describe a technique to
transfer the visual look of an artist’s picture onto a casual photograph.
They explored a larger space of image modifications by applying an
arbitrary, user-specified monotonic transfer function to the large-scale
component of the source image. With histogram matching, they con-
struct a transfer function that matches the global contrast and bright-
ness of the model photograph. They also show that the small-scale
component can be modified to vary the amount of texture visible in the
image. To this end, they introduce the notion of textureness to quan-
tify the local texture amplification they wish to induce in an image by
cross-bilateral filtering (cf. Section 3.4.1 for detail). With the small-
scale components (or high frequencies) H of the image’s log-intensity
logI, the textureness is defined by:

1
Wp

∑
q∈S

Gσs(||p − q||) Gσr(|logIp − logIq|) |H|q . (8)

Said another way, textureness is the amplitude of the high frequen-
cies that were locally averaged while respecting the edges of the input
image.

Later, Chen et al. [16] sped up the bilateral filter computation using
graphics hardware and achieved real-time results on high-definition
videos, thereby enabling on-the-fly control of the photographic style.

3.2.5 Detail Enhancement

Fattal et al. [25] extend the small-scale/large-scale decomposition to
multiple layers to allow for finer control and selection of enhanced
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(a) Input (b) Result after contrast 
and “textureness” increase

Fig. 3.5 Bae et al. [5] use the bilateral filter to separate the large-scale and small-scale
variations of an image, and then processes them separately. In this example, users chose
to increase the global image contrast and increase the texture as well for a more dramatic
image result. Figure reproduced from Bae et al. [5].

(a) Sample input images (b) Output with enhanced details

Fig. 3.6 Fattal et al. [25] use the bilateral filter to create a multi-scale decomposition of
images. They first decompose several images of the same scene under different lighting
conditions (a) and construct a new pyramid that generates a new image with enhanced
details (b). Figure reproduced from Fattal et al. [25].

details. They use their decomposition on several images taken from the
same point of view but under different lighting conditions and demon-
strate a variety of effects by combining portions of bilateral image
pyramids obtained from these lighting variations. They describe how
these combinations can be controlled to reveal the desired details while
avoiding the halo artifacts (Figure 3.6). They also describe a numer-
ical scheme to efficiently compute image pyramids using the bilateral
filter.
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3.2.6 High-Dynamic-Range Hallucination

Wang et al. [69] use a bilateral filter decomposition to allow users to
generate a high-dynamic-range image from a single low-dynamic-range
one. They seek to reconstruct data in over- and under-exposed areas of
the image. They use the bilateral filter to create a decomposition into
texture and illumination inspired by Oh et al.’s [48] work. This allows
them to apply user-guided texture synthesis to the detail (texture)
layer, after bilateral filtering removed the large-scale illumination
variations. Similarly, they can apply smooth interpolation to the large
scale (illumination) layer because high-frequency texture has been
decoupled.

3.2.7 Discussion and Practical Considerations

Contrast management relies on large spatial kernels to create large-
scale/small-scale decompositions, because the small scale needs to
include high- and medium-frequency components. The human visual
system is not very sensitive to low frequencies but is quite sensitive to
medium frequencies. As the large-scale component is typically the one
that gets its contrast reduced, medium frequencies must be excluded
from it to avoid attenuation as well.

For contrast management, the bilateral filter is usually applied
to the log of the original image because the human visual system’s
response to light is approximately multiplicative. Using the log domain
makes the range sigma act uniformly across different levels of intensity:
edges where filtering should stop are defined in terms of multiplicative
contrast. Similarly, relighting applications deal with a multiplicative
process where illumination is multiplied by reflectance. The use of the
log domain is not without its problems, as zero intensity maps to minus
infinity and in dark regions noise in sensed intensity may be magni-
fied in the log domain. Accordingly, many users add small constant on
the order of the noise level to the input intensities before taking the
log. The new color space proposed by Chong et al. [18] is particularly
promising to handle these and other multiplicative processes. Using the
luminance channel of the CIE-Lab color space is another useful alter-
native. Instead of a log curve, it is based on a cubic root that does not
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model exactly these multiplicative processes but is numerically simpler
to handle.

3.3 Depth Reconstruction

Yáng et al. [75, 76] and Yoon and Kweon [78] applied the bilateral
filter to aid in stereo reconstruction, the recovery of depth values from
correspondences between pixels different views. Ideally we wish to find a
corresponding point in the right image for every pixel in the left image.
As the distance between these point pairs, the disparity, is inversely
proportional to the depth at that pixel, this information is equivalent
to recovering the scene geometry. To pair the pixels with points in
the other image, stereo algorithms typically compute a similarity score
such as color differences or local correlation. Yáng et al. and Yoon
and Kweon show that locally aggregating these scores using bilateral
weights significantly improves the accuracy and reduces noise in the
recovered depth maps. Yáng et al. [75] have tested many similarity
scores and pairing strategies and found that the bilateral aggregation
always improves their results.

3.4 Data Fusion

3.4.1 Flash/No-flash Imaging

Eisemann and Durand [22] and Petschnigg et al. [53] describe simi-
lar techniques to produce satisfying pictures in low-light conditions by
combining a flash and a no-flash photograph. Their work is motivated
by the fact that, although the flash image has unpleasantly direct and
hard-looking lighting, its signal-to-noise ratio is higher than the no-
flash image. On the other side, the no-flash image has more pleasing
and natural-looking lighting, but its high frequencies are corrupted by
noise and the camera may require a longer exposure time and increase
the likelihood of blurring from an unsteady camera. The key idea is
to extract the details of the flash image and combine them with the
large-scale component of the no-flash picture. A variant of the bilateral
filter performs this separation.
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(a) Sample input image (b) Coarse resolution computation (c) Refinement using bilateral 
aggregation

Fig. 3.7 Yáng et al. [75] use the bilateral filter to achieve stereo reconstruction from pho-
tographs (a). First, they build a coarse depth map (b) and then use a scheme inspired from
the bilateral filter to aggregate local information and compute a refined, more accurate
depth map (c). Figure reproduced from Yang et al. [75].

Both articles introduced the cross (joint) bilateral filter to better
process the no-flash photograph whose noise level is often too high to
enable an accurate edge detection. As the flash image F represents the
same scene, it is used to define the edges and the filtered no-flash image
is obtained as:

CBF [N,F ]p =
1

Wp

∑
q∈S

Gσs(||p − q||) Gσr(|Fp − Fq|) Nq, (9)

where N is the original no-flash image. Figure 3.8 gives an overview of
the process, and Figures 3.9 and 3.10 show sample results.

3.4.2 Multispectral Fusion

Bennett et al. [9] show how to exploit infrared data in addition to
standard RGB data to denoise low-light video streams. They use the
dual bilateral filter, a variant of the bilateral filter with a modified
range weight that accounts for both the visible spectrum (RGB) and
the infrared spectrum:

DBF [RGB ]p =
1

Wp

∑
q∈S

Gσs(||p − q||) GσRGB (||RGBp − RGBq||)

× GσIR(|IRp − IRq|) RGBq, (10)

where RGBp is a 3-vector representing the RGB component at
pixel p, and IRp the measured infrared intensity at the same pixel p.
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BF BF

Fig. 3.8 Denoising of low-light images: Overview of the flash/no-flash combination of
Eisemann and Durand [22]. The bilateral filter is used to combine the illumination com-
ponent of the no-flash picture and the structure component of the flash picture. Figure
reproduced from Eisemann and Durand [22].

(a) Photograph with flash (b) Photograph without flash (c) Combination

Fig. 3.9 By combining a flash photograph (a) and a no-flash photograph (b), Eisemann and
Durand render a new photograph (c) that has both the warm lighting of the no-flash picture
and the crisp details of the flash image. Figure reproduced from Eisemann and Durand [22].
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(a) Flash picture (b) No-flash picture (c) Output of  Petschnigg et al. [53]

Fig. 3.10 By combining a flash photograph (a) and a no-flash photograph (b),
Petschnigg et al. render a new photograph (c) that has both the warm lighting of the
no-flash picture and the crisp details of the flash image. Figure reproduced from Petschnigg
et al. [53].

Bennett et al. show that this combination better detects edges because
it is sufficient for an edge to appear in just one of the channels (RGB
or infrared) to form a sharp boundary in the result. In combination
with temporal filtering, they demonstrate that it is possible to obtain
high-quality video streams from noisy sequences of moving objects shot
in very low light.

3.5 3D Fairing

Jones et al. [34] extend bilateral filtering to meshes. The difficulty com-
pared to images is that all three xyz coordinates are subject to noise,
data are not regularly sampled, and the z coordinate is not a function
of x and y unlike the pixel intensity. To smooth a mesh, Jones et al.
assume that it is locally flat. Under this assumption and in the absence
of noise, a vertex p belongs to the plane tangent to the mesh at any
nearby vertex q. With πq(p) the projection of p onto the plane tangent
to the mesh at q, ideally we have p = πq(p). However, because of noise
and because the mesh is not flat everywhere, this relationship does not
hold in general. To smooth the mesh, Jones et al. average the position of
p predicted by πq(p), they apply a spatial weight Gσs(||p − q||) which
ensures that only nearby points contribute to the estimate. They add
a term Gσr(||p − πq(p)||) that reduces the weights of outliers, i.e., the
predictions πq(p) that are far away from the original position p. Using
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(a) Input mesh (b) Smoothed mesh

Fig. 3.11 Jones et al. [34] have adapted the bilateral filter to smooth 3D meshes while
preserving their most prominent features. Figure reproduced from Jones et al. [34].

a term aq to account for the sampling density, the resulting filter is:

FJones(p) =
1

Wp

∑
q

aq Gσs(||p − q||) Gσr(||p − πq(p)||) πq(p). (11)

To improve the results, they mollify the mesh normals used to estimate
the tangent planes [30, 47], that is, they apply a low-pass filter on
the normals. This mollification is analogous to the pre-filtering step
described by Catté et al. [15] for PDE filters. Figure 3.11 shows a
sample result.

Fleishman et al. [26] simultaneously proposed a similar approach
(Figure 3.12). The main difference between the techniques of
Jones et al. and Fleishman et al. [26] is the way Jones expresses his
flat neighborhood assumption. Fleishman et al. use the mesh normal
np at p and project neighbors onto it. With q is such a neighbor, q
should project on p, that is: p + [(q − p) · np] np = p. This results in
the following variant of the bilateral filter:

FFleishman(p)

= p +
np

Wp

∑
q

Gσs(||p − q||) Gσr(|(q − p) · np|)[(q − p) · np]. (12)

The projection on the normal can be rewritten using the plane pro-
jection operator π used by Jones et al.: [(q − p) · np] np = q − πp(q).
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(a) Input (b) Output of Fleishman et al. [2003] 

Fig. 3.12 Fleishman et al. [34] have adapted the bilateral filter to smooth 3D meshes while
preserving their most prominent features. Figure reproduced from Fleishman et al. [26].

This leads to the following expression equivalent to Equation (12):

FFleishman(p)

= p +
1

Wp

∑
q

Gσs (||p − q||) Gσr (||q − πp(q)||)(q − πp(q)
)
. (13)

These two formulations underline the differences between the
approaches of Jones et al. and Fleishman et al. Equation (12) shows
that, unlike Jones et al., Fleishman et al. guarantee no vertex drift
by moving p only along its normal np. On the other hand, Fleish-
man et al. do not compensate for the density variations described by
Jones et al. Furthermore, Equation (13) shows that the weights between
both approaches are similar except that Jones et al. project p on the
tangent plane at q and thus exploit both the position and normal of all
neighbors q, whereas Fleishman et al. project q on the tangent plane
at p, thereby exploiting first-order information only from the vertex p.
This suggests a hybrid filter that we have not yet evaluated:

Fhybrid(p)

= p +
1

Wp

∑
q

aqGσs(||p − q||) Gσr(||p − πq(p)||)(q − πp(q)). (14)



28 Applications

In addition to these differences in estimating the vertex positions,
Fleishman et al. advocate iterating the filter three times for further
smoothing of the mesh geometry. Wang [68] refines the process
by explicitly detecting the sharp-edge vertices to preserve them.
He remeshes the model at these edges to ensure that sharp features
are correctly represented by an edge between two triangles.

Later, Jones et al. [33] refined their technique to filter normals.
Applying a geometric transformation f to the 3D space given by
x ∈ R

3 �→ F (x), Jones transforms the normals by the transposed
inverse of the Jacobian of F . The Jacobian of F is a 3 × 3 matrix
that captures the first-order deformation induced by F and is defined
by Jij(F ) = ∂Fi/∂xj where Fi is the ith coordinate of F , and xj the jth
coordinate of x. Jones et al. show that iteratively transforming the nor-
mals by J−T(FJones) smooths the normals of a model while respecting
its edges and without moving its vertices. They argue that not moving
the vertices yields a better preservation of the fine details of the meshes.

Miropolsky and Fischer [45] propose a variant of bilateral filtering
to smooth and decimate 3D point clouds. They assume that a normal
np is known for each point p. They overlay a regular 3D grid on top
of the points and determine a representative point for each grid cell
by taking into account the point location and normal. With c the cell
center and nc the mean normal of the cell points, they propose:

FMiropolsky(c) =
1

Wp

∑
q

Gσs(||c − q||) Gσr(nc · nq)q (15)

3.6 Other Applications

3.6.1 Depth Map from Luminance

Khan et al. [35] use bilateral filtering to process the luminance chan-
nel of an image and obtain a pseudo-depth map that is sufficient for
altering the material appearance of the observed object. The original-
ity of this use of the bilateral filter is that the smoothing power of the
bilateral filter determines the geometric characteristics of an object.
For instance, a smaller intensity tolerance σr results in a depth map
that looks “engraved” with the object texture, because the intensity
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patterns are well preserved and directly transferred to the map as depth
variations.

3.6.2 Video Stylization

Winnemöller et al. [72] iterate the bilateral filter to simplify video con-
tent and achieve a cartoon look (Figure 3.13). They demonstrate that
the bilateral filter can be computed in real time at video resolution
using the numerical scheme of Pham and van Vliet [55] on modern
graphics hardware. Later, Chen et al. [16] ported the bilateral filter
on the GPU using the bilateral grid and achieved similar results on
high-definition videos. Winnemöller et al. demonstrate that bilateral
filtering is an effective preprocessing for edge detection: filtered images
trigger fewer spurious edges. To modulate the smoothing strength of
the bilateral filter, they modify it to control the degree of edge preserva-
tion. The range weight Gσr is replaced by (1 − m) · Gσr + m · u where
m is a function varying between 0 and 1 to control edge preservation,
and u defines the local importance of the image. To define u and m,
Winnemöller et al. suggest using an eye tracker [20], a computational
model of saliency [31], or a user-painted map.

(a) Input (b) Abstracted output

Fig. 3.13 Sample abstraction result from the method by Winnemöller et al. [72]. Reproduced
from Winnemöller et al. [72].
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Fig. 3.14 Bayer patterns are such that, although each pixel is missing two color channels,
adjacent pixels have measures in these missing channels. Figure reproduced from Wikipedia
(http://en.wikipedia.org/wiki/Bayer filter).

3.6.3 Demosaicking

Demosaicking is the process of recovering complete color information
from partial color sampling through a Bayer filter (see Figure 3.14).
Ramanath and Snyder [56] interpolate missing color values of Bayer
patterns [8]. These patterns are used in digital cameras where each
sensor measures only a single value among red, green, and blue. Bayer
patterns are such that, although each pixel is missing two color chan-
nels, adjacent pixels have measures in these missing channels. Demo-
saicking is thus a small-scale interpolation problem where values are
interpolated from neighbor pixels. Directly interpolating the values
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yields blurry images because edges are ignored. Ramanath and Snyder
start from such an image and refine the result with bilateral filter-
ing. They use a small spatial neighborhood to consider only the pixels
within the 1-ring of the filtered pixel, and also ensure that measured
values are not altered. The validation shows that the obtained results
compare favorably to state-of-the-art techniques although the compu-
tational cost is higher.

3.6.4 Optical Flow

Xiao et al. [74] apply bilateral filtering to regularize the optical flow
computation. They use an iterative scheme to refine the flow vectors
between a pair of images. Each iteration consists of two steps: first the
vectors are adjusted using a scheme akin to Lucas and Kanade [42],
then the flow vectors are smoothed using a modified version of bilat-
eral filtering that has two additional terms, one accounting for flow
similarity, and one that ensures that occluded regions are ignored dur-
ing averaging. This scheme also “fills in” occluded regions, estimating
depth for pixels visible in one image of the pair but hidden in the
other. These occluded points gather information from pixels outside
the occluded region covered by the bilateral filter kernel, and the range

(a) Upsampled result (b) Nearest
neighbor

(c) Bicubic (d) Gaussian (f) Ground
truth

(e) Joint
bilateral

Fig. 3.15 Sample use of joint bilateral upsampling [37] to tone map a high-resolution HDR
image. In this context, the method is used to upsample the exposure map (a) applied to the
pixel values to obtain the output (e) that is close to the ground-truth result (f) and does
not exhibit the defects of other upsampling methods (b–d). Figure reproduced from Kopf
et al. [37].
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weight ensures that only similar points contribute, thereby avoiding
data diffused from the “wrong side of the occlusion”. An important
feature of this technique is that it actually regularizes the computa-
tion, i.e., the bilateral filter does not optimize a trade-off between a
data term and smoothness term, it only makes the data smoother.
Nonetheless, the process as a whole is a regularization because it inter-
leaves bilateral filtering with an optimization step, and can be seen as a
progressive refinement of the initial guess of a steepest-slope optimiza-
tion. Sand and Teller [57] accelerate this technique by restricting the
use of bilateral filtering near the flow discontinuities.

3.6.5 Upsampling

Kopf et al. [37] describe joint bilateral upsampling, a method inspired
from the bilateral filter to upsample image data. The advantage of their
approach is that it is generic and can potentially upsample any kind of
data such as the exposure map used for tone mapping or hues for col-
orization. Given a high-resolution image and a downsampled version,
one can compute the data at low resolution and then upsample them
using a weighted average. High-resolution data are produced by aver-
aging the samples in a 5 × 5 window at low resolution. The weights
are similar to those defined by the bilateral filter, as each neighbor-
ing pixels’ influence decreases with distance and color difference. As a
result, Kopf’s scheme interpolates low-resolution data while respecting
the discontinuities of the high-resolution input image. This filter is fast
to evaluate because it only considers a small spatial footprint.



4
Efficient Implementation

A naive implementation of the bilateral filter can be extremely slow,
especially for large spatial kernels. Several approaches have been pro-
posed to speed up the computation. They all rely on approximations
that yield various degrees of acceleration and accuracy. In this sec-
tion, we describe these efficient algorithms and compare their perfor-
mances. We begin with the brute force approach as reference. We then
describe the techniques based on separable kernels of Pham [55] and
Pham and van Vliet [54], the local histogram of Weiss [71], and the
bilateral grid [16, 50]. Figure 4.3 at the end of this section provides a
visual comparison of the achieved results.

4.1 Brute Force

A direct implementation of the bilateral filter consists of two nested
loops, as presented in Table 4.1.

The complexity of this algorithm is O
(
|S|2

)
, where |S| the size of

the spatial domain (i.e., the number of pixels). This quadratic com-
plexity quickly makes the computational cost explode for large images.

33
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Table 4.1 Algorithm for the direct implementation of bilateral filter.

For each pixel p in S

(1) Initialization: BF [I]p = 0,
Wp = 0

(2) For each pixel q in S
(a) w =

Gσs(||p − q||) Gσr(|Ip − Iq|)
(b) BF [I]p+= wIq

(c) Wp+= w

(3) Normalization: BF [I]p = Ip /Wp

A classical improvement is to restrict the inner loop to the neigh-
borhood of the pixel p. Typically, one considers only the pixels q such
that ||p − q|| ≤ 2σs. The rationale is that the contributions of pixels
farther away than 2σs is negligible because of the spatial Gaussian.
This leads to a complexity on the order of O (|S|σs

2
)
. This implemen-

tation is efficient for small spatial kernels, that is, small values of σs but
become quickly prohibitive for large kernels because of the quadratic
dependence in σs.

4.2 Separable Kernel

Pham and van Vliet [55] propose to approximate the 2D bilateral filter
by two 1D bilateral filters applied one after the other. First, they filter
each image column and then each row. Each time, they use the brute
force algorithm restricted to a 1D domain, that is, the inner loop on
pixels q is restricted to pixels on the same column (or row) as the pixel
p. As a consequence, the complexity becomes O (|S|σs) because the
considered neighborhoods are 1D instead of 2D. This approach yields
significantly faster running times but the performance still degrades
linearly with the kernel size. Furthermore, this approach computes
an axis-aligned separable approximation of the bilateral filter kernel.
Although this approximation is satisfying for uniform areas and straight
edges, it forms a poor match to more complex features such as textured
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regions. As a consequence, axis-aligned “streaks” may appear with large
kernels in such regions (Figure 4.3). Pham [54] describes how to steer
the separation according to the local orientation in the image to reduce
these streaks. This approach improves the quality of the results, espe-
cially on slanted edges, but is computationally more involved because
the 1D filters are no longer axis aligned.

4.3 Local Histograms

Weiss [71] considers the case where the spatial weight is a square box
function, that is, he rewrites the bilateral filter as:

BF [I]p =
1

Wp

∑
q∈Nσs (p)

Gσr(|Ip − Iq|)Iq (16a)

Wp =
∑

q∈Nσs (p)

Gσr(|Ip − Iq|), (16b)

where Nσs(p) = {q, ||p − q||1 ≤ σs}. In this case, the result depends
only on the histogram of the neighborhood Nσs(p) because the actual
position of the pixel within the neighborhood is not taken into account.

Following this remark, Weiss exposes an efficient algorithm to com-
pute the histogram of the square neighborhoods of an image. We refer
to his article for the detail of the algorithm. The intuition behind his
approach is that the neighborhoods Nσs(p1) and Nσs(p2) of two adja-
cent pixels p1 and p2 largely overlap. Based on this remark, Weiss
describes how to efficiently compute the histogram of Nσs(p1) by
exploiting the similarity with the histogram of Nσs(p2). Once the his-
togram of Nσs(p) is known for a pixel p, the result of the bilateral fil-
ter BF [I]p (Equation (16a)) can be computed because each histogram
bin indicates how many pixels q have a given intensity value I. A
straightforward application of this technique produces band artifacts
near strong edges, a.k.a. Mach bands, because the frequency spectrum
of the box filter is not band-limited. Weiss addresses this issue by iter-
ating his filter three times, which effectively smooths away the artifacts.

Weiss [71] then demonstrates that his algorithm has a complexity
on the order of O (|S| logσs) which makes it able to handle any kernel
size in short times. Furthermore, his algorithm is designed such that
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it can take advantage of the vector instruction set of modern CPUs,
thereby yielding running times on the order of one second for images of
several megapixels each. Unfortunately, the algorithm processes color
images independently for each channel, which can introduce bleeding
artifacts; in addition, it is unclear how to extend this filter for use in
cross bilateral filtering applications.

4.4 Layered Approximation

Durand and Dorsey [21] propose a fast approximation based on the
intuition that the bilateral filter is almost a convolution of the spatial
weight Gσs(||p − q||) with the product Gσr(|Ip − Iq|) Iq (Equation (3)).
But the bilateral filter is not a convolution because the range weight
Gσr(|Ip − Iq|) depends on the pixel value Ip. Durand and Dorsey over-
came this by picking a fixed intensity value i, computing the product
for it, Gσr(|i − Iq|) Iq, and convolving it with the Gaussian kernel Gσr .
After normalization, this gives the exact result of the bilateral filter at
all pixels p such that Ip = i. Computing the bilateral filter this way
would be extremely slow because it requires a convolution for each
possible pixel value i.

Instead, Durand and Dorsey propose a two-step speed-up. First,
they select a sparse subset {i0, . . . , in} of the intensity values. For each
value ik, they evaluate the product Gσr(|ik − Iq|)Iq. This produces lay-
ers L̃0, . . . , L̃n. Each L̃k is then convolved with the spatial kernel Gσs

and normalized to form a new layer L̂k that contains the exact results
of the bilateral filter for pixels with intensity equal to ik. For pixels
whose intensities have not been sampled, the result is linearly inter-
polated from the two closest layers. To further speed up the process,
they downsample the image I prior to computing the product with the
range weight Gσr and convolving with the spatial kernel Gσs . The final
layers L̂0, . . . , L̂n are obtained by upsampling the convolution outputs.
The bilateral filter results are still obtained by linearly interpolating
between the two closest layers (Table 4.2).

Durand and Dorsey’s approximation dramatically speeds up the
computation. Whereas a brute force implementation requires several
minutes of computation for a megapixel image, their scheme runs in
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Table 4.2 Reformulation proposed by Durand and Dorsey [21].

1. Given a 2D image I, compute a low-resolution

version Ĩ, pick a set of intensities {i0, . . . , in},
and compute layers L̃0, . . . , L̃n:

L̃k(q) = Gσr(|ik − Ĩq|) Ĩq.

2. Convolve each layer with the spatial kernel and

normalize the result:

L̄k = (Gσs ⊗ L̃k) ÷ (Gσs ⊗ Gσr),

where ÷ indicates a per-pixel division and

Gσs ⊗ Gσr corresponds to the sum of the weights

at each pixel.

3. Upsample the layers L̄k to get L̂k.

4. For each pixel p with intensity Ip, find the

two closest values ik1 and ik2, and output the

linear interpolation:

BF [I]p ≈ Ip − ik1

ik2 − ik1

L̂k2 +
ik2 − Ip
ik2 − ik1

L̂k1 .

about one second. The downside of this approach is that in practice,
the achieved result can be significantly different from the reference
brute force implementation, and there is no formal characterization
of this difference. In the next section, we discuss the scheme of Paris
and Durand [50] that is inspired by the layered approximation, and
achieves an equivalent speed-up but with significantly better accuracy.
We discuss the relationship between both approaches at the end of the
following section.

4.5 Bilateral Grid

Inspired by the layered approximation of Durand and Dorsey [21], Paris
and Durand [50] have reformulated the bilateral filter in a higher dimen-
sional homogeneous space. They described a new image representation
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where a gray-level image is represented in a volumetric data structure
that they named the bilateral grid. In this representation, a 2D image I

is represented by a 3D grid Γ where the first two dimensions of the grid
corresponds to the pixel position p and the third dimension correspond
to the pixel intensity Ip. In addition, this 3D grid stores homogeneous
values, that is, the intensity value I is associated with a non-negative
weight w and stored as an homogeneous vector (wI,w). Using this con-
cept, Paris and Durand [50] showed that the bilateral filter corresponds
to a Gaussian convolution applied to the grid, followed by sampling and
normalization of the homogeneous values.

More precisely, the authors consider the S × R domain and repre-
sent a gray-scale image I as a 3D grid Γ:

Γ(px,py, r) =

{(
I(px,py),1

)
if r = I(px,py)

(0,0) otherwise
. (17)

With this representation, they demonstrate that bilateral filtering
exactly corresponds to convolving Γ with a 3D Gaussian whose parame-
ters are (σs,σs,σr): Γ̃ = Γ ⊗ Gσs,σs,σr . They show that the bilateral filter
output is BF [I] (px,py) = Γ̃

(
px,py, I(px,py)

)
. This process is illustrated

in Figure 4.1 and detailed in Table 4.3.
The benefit of this formulation is that the Gaussian-convoluted grid

GC [Γ] is a band-limited signal because it results from a Gaussian con-
volution with a low-pass filter. Paris and Durand use this argument
to downsample the grid Γ. As a result, they deal with fewer stored
data points and achieve performance on the order of one second for
images with several megapixels. Chen et al. [16] further improved the
performances by mapping the algorithm onto modern graphics hard-
ware, obtaining running times on the order of a few milliseconds. Paris
and Durand recommend using the Gaussian width parameters σs and
σr to set the sampling rates for the 3D grid. This yields a complexity
of O

(
|S| + |S|

σs2
|R|
σr

)
where |S| is the size of the spatial domain (i.e.,

the number of pixels) and |R| is the size of the range domain (i.e., the
extent of the intensity scale).

This approach can be easily adapted to cross bilateral filtering and
color images. The downside is that color images require a 5D grid which
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Fig. 4.1 Overview on a 1D signal of the reformulation of the bilateral filter as a linear
convolution in a homogeneous, higher dimensional space. Figure reproduced from Paris and
Durand [50].

no longer maps nicely onto graphics hardware and that requires large
amount of memory for small kernels (10 pixels or less).

4.5.1 Link with the Layered Approximation

The bilateral grid and the layered approximation share the idea of
subsampling along the intensity axis and downsampling in the spa-
tial domain. The major difference is in the way the downsampling is
performed. The layered approximation encounters difficulties at discon-
tinuities: it averages adjacent pixels with different values, e.g., a white
and a black pixel ends up being represented by one gray value that
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Table 4.3 Approximation proposed by Paris and Durand [50]. In practice, localized down-
sampling and upsampling eliminates the need to build the entire high-resolution grid in
memory.

1. Given a 2D image I, build the grid Γ : S × R →
R

2 that contains homogeneous values:

Γ(px,py, r) =
{

(I(px,py),1) if r = I(px,py)
(0,0) otherwise

.

2. Downsample Γ to get Γ̃.
3. Perform a Gaussian convolution of Γ̃, for each

component independently

GC
[
Γ̃
]
(px,py, r) = Gσs,σr ⊗ Γ̃(px,py, r),

where Gσs,σr is a 3D Gaussian with σs as

parameter along the two spatial dimensions and

σr along the range dimension.

4. Upsample GC
[
Γ̃
]
to get Γ̂.

5. Extracting the result: For a pixel p with

initial intensity Ip, we denote (w̃I, w̃) the

value at position (px,py, Ip) in Γ̂. The result of

the bilateral filter is

BF [I]p ≈ w̃I/w̃.

poorly represents the original signal. In comparison, the bilateral grid
subsampling strategy preserves adjacent pixels with different intensi-
ties, because they are far apart along the intensity axis. In the white
and black pixels case, the bilateral grid retains the two different values
involved and thus is able to produce better results. Figure 4.2 illustrates
this behavior. The bilateral grid should be preferred over the layered
approximation, because both approaches perform equivalently fast.

4.6 Bilateral Pyramid

For several applications such as detail enhancement [25], it is desirable
to decompose the image into more than two layers. Fattal et al. [25]
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(a) Downsampling of the layered approximation (b) Downsampling of bilateral grid approximation

Fig. 4.2 Compared to the layered approximation, the bilateral grid better represents dis-
continuities and thus yields superior results. This figure is reproduced from Paris and
Durand [50].

propose to compute such a decomposition by successively applying
the bilateral filter to the image with varying parameters: the spatial
parameter σs is doubled at each level and the range parameter σr is
halved. Based on this scenario, they describe a dedicated numerical
scheme. Intuitively, instead of computing each level “from scratch,”
they use the result from the previous level and rely on the fact that
this image has already been smoothed to simplify the computation. For
each level, they compute a bilateral filter based on a 5 × 5 kernel. At
the first level they apply the bilateral filter with a small kernel σs = 1,
and at each subsequent level they double the spatial extent of the ker-
nel. A naive approach would use more coefficients, e.g., a 9 × 9 kernel,
but Fattal et al. keep the cost constant by using 5 × 5 samples and
inserting zeros. For instance, they approximate a 9 × 9 kernel using
5 × 5 samples interleaved with zeros, such that a 1 − 4 − 6 − 4 − 1
row becomes 1 − 0 − 4 − 0 − 6 − 0 − 4 − 0 − 1. This proven strategy,
known as an algorithme à trous, yields minimal errors when applied
to band-limited signals [43]. In this particular case, the signal is not

Table 4.4 Complexity summary for Bilateral Filter algorithms.

Brute force (Section 4.1) O
(
|S|2

)

Separable kernel (Section 4.2) O
(
|S|σs

)

Local histograms (Section 4.3) O
(
|S| logσs

)

Layered approximation (Section 4.4) O
(
|S| + |S|

σs2
|R|
σr

)

Bilateral grid (Section 4.5) O
(
|S| + |S|

σs2
|R|
σr

)
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(a) Input (876x584)

(b) Input (c) Exact bilateral filter using CIE Lab

(d) Bilateral-grid implementation using “per-channelRGB”
(0.48s, PSNRRGB = 38dB, PSNRLab = 34dB)

(e) Bilateral-grid implementation using RGB
(8.9s, PSNRRGB = 41dB,  PSNRLab = 39dB)

(f) Separable-kernel implementation using CIE Lab
(5.8s, PSNRRGB = 42dB, PSNRLab = 42dB)

(g) Bilateral-grid implementation using CIE Lab
(10.9s, PSNRRGB = 46dB, PSNRLab = 46dB)

Fig. 4.3 Comparison of different strategies for filtering a color source image (a,b). Processing
the red, green, and blue channels independently is fast but can cause color bleeding that
removes the cross from the sky in (d). Filtering RGB vectors is slower but improves results
although some bleeding remains (e). Using a perceptually motivated color space such as
CIE-Lab addresses those artifacts (c,g). The separable-kernel implementation is fast but
incurs axis-aligned streaks (f) that may undesirable in a number of applications. These
remarks are confirmed by the numerical precision evaluated with the PSNR computed the
RGB and CIE-Lab color spaces. The contrast of the close-ups has been increased for clarity
purpose. This figure is reproduced from Paris and Durand [50].
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band-limited because bilateral filtering preserves edges. Yet, Fattal’s
results show that in practice, this approximation achieves good results
without visual defects.

4.7 Discussion

The choice of implementation is crucial to achieving satisfying results
with good performance. Table 4.4 summarizes the complexity of the
various implementations we described.

When graphics hardware is available, we recommend the bilateral
grid method of Chen et al. [16], because it achieves high-quality out-
puts and real-time performances even on high-resolution images and
videos. If only the CPU is available, the choice is split between the
local-histogram method of Weiss [71] and the bilateral grid of Paris
and Durand [50]. To process color images or compute a cross bilateral
filter, the bilateral grid provides a satisfying solution, especially with
large kernels. To process gray-level images with kernels of any size,
e.g., in an image-editing package where users can arbitrarily choose
the kernel size, the local-histogram approach is preferable because it
consistently yields short running times. On color images, this approach
can yield less satisfying results because channels are processed inde-
pendently, which may cause some color bleeding (Figure 4.3).



5
Relationship between Bilateral Filtering and

Other Methods or Framework

Filtering an image while preserving its edges has been addressed in
many ways in computer vision. Interestingly, some methods give results
that are qualitatively very similar to those from bilateral filtering. So
the natural question is to investigate what kind of relationships may
exist between bilateral filtering and other existing methods. In this
section we focus on local mode filtering, robust statistics and PDE-
based approaches.

5.1 Bilateral Filtering is Equivalent to Local Mode Filtering

Local mode filtering was introduced by Van de Weijer and van den
Boomgaard [65] as an extended filtering method to preserve edges and
details. In this section, we demonstrate that the bilateral filtering is
a local mode seeking approach. Based on this histogram interpreta-
tion, Weiss [71] proposed a fast numerical scheme, and Chen et al. [16]
showed that the bilateral grid can be used for local histogram equal-
ization. Refer to Section 4.3 for more details.

Given a pixel and its associated local histogram, local mode filtering
is an iterative procedure which converges to the closest highest mode of

44
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Fig. 5.1 (a) Image and local neighborhood for a given pixel. (b) In the local mode filtering,
proposed by Van de Weijer and van den Boomgaard [65], each pixel “moves” toward the
maximum of the local mode it belongs to. In this example, the intensity of the center pixel
will move toward the maximum of the mode made of low-intensity pixels. (c) Effect on the
local histogram of the range parameter.

the local histogram, starting from the value of the pixel at the center of
the neighborhood. This is illustrated in Figure 5.1(a) and (b). Choosing
the closest local mode instead of the global mode allows details to be
preserved.

Like the bilateral filter, local mode filtering depends on two param-
eters: one which defines the neighborhood for the local histogram esti-
mation, and one which is the smoothness parameter of the histogram.
The influence of the latter parameter is illustrated in Figure 5.1(c):
when the smoothing parameter increases, local modes and the global
mode merge into a single global mode which corresponds to the stan-
dard Gaussian smoothed value. In that case, details are not preserved.

To define local mode filtering, given a gray-scale image I : Ω → R,
one can start with the definition of a histogram:

H1(i) =
∑
q∈S

δ(Iq − i), ∀i ∈ R,

where δ is the Dirac function so that δ(s) = 1 if s = 0, and δ(s) = 0
otherwise. A classical operation consists in smoothing histograms, so
that we define:

H2(i,σr) = H1 ⊗ Gσr(i) =
∑
q∈S

Gσr(Iq − i),
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where σr denotes the smoothing done on the intensity values, i.e., on the
range. A step further, one can define an histogram locally, i.e., around a
given position p. To do it, one can introduce a spatial Gaussian kernel
centered around p:

H3(p, i,σr,σs) =
∑
q∈S

Gσs(||p − q||) Gσr(Iq − i), (18)

where σs determines the spatial neighborhood around p. Local his-
tograms can be used to study image properties [36] but also to perform
image restoration. The idea of local mode filtering is to make the inten-
sity Ip of the center pixel evolve toward the closest local maximum. So,
Ip will verify:

∂H3

∂i
(p, i,σr,σs)

∣∣∣
i=Ip

= 0. (19)

Taking into account Equation (18) and the expression of the Gaussian
kernel, Equation (19) becomes:∑

q∈S
(Iq − i) Gσs(||p − q||) Gσr(Iq − i) = 0,

so that Ip should verify the following implicit equation:

Ip = i where i is such that i

=

∑
q∈S Gσs(||p − q||) Gσr(Iq − i)Iq∑
q∈S Gσs(||p − q||) Gσr(Iq − i)

. (20)

To solve this implicit equation, one can propose the following iterative
scheme: Given I0

p = I, estimate:

It+1
p =

∑
q∈S Gσs(||p − q||) Gσr(It

q − It
p)It

q∑
q∈S Gσs(||p − q||) Gσr(It

q − It
p)

for all p. (21)

Interestingly, the right-hand side term of Equation (21) corresponds to
the definition of the bilateral filter: Consequently, bilateral filtering can
be considered as a local mode seeking method.

Remark. Another important relation established by van de Weijier
and van den Boomgaard [65] is the correspondence between local
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mode filtering and the framework of robust statistics. In fact, maxi-
mizing H3 is equivalent to minimizing a residual error ε(p, i,σr,σs) =
1 − H3(p, i,σr,σs). We explain this idea in more detail later, but focus
more on the link between the bilateral filter and robust statistics (see
Section 5.2).

5.2 The Bilateral Filter is a Robust Filter

Robust statistics offers a general background to model a large class
of problems, including image restoration (see Ref. [30, 29, 40, 28, 27]
for more details). Expressed as optimization problems in a discretized
space, it is possible to define some edge-preserving restoration formu-
lations. In this section, we show that bilateral filtering corresponds to
a gradient descent of a robust minimization problem.

Image restoration can be formulated as a minimization problem in
the following way: Given a noisy image In, the problem is to find the
minimizer of the discrete energy:

min
I

∑
p∈S

(Ip − In
p)2 +

∑
q∈N (p)

ρ(Iq − Ip)

 , (22)

where N (p) is a neighborhood p, and ρ is a weighting function (also
called error norm).

Energy in Equation (22) contains two kinds of terms. The first term
is a fidelity-of-attachment term which prevents the solution from drift-
ing too far away from the noisy input values. The second term is a
regularization term that will penalize differences of intensities between
neighboring pixels, with a strength that depends on the function ρ.
Thus the regularity of the solution will depend on function ρ. In par-
ticular, this method will be robust if we can preserve significant inten-
sity differences such as edges, i.e., if we can distinguish the difference
between inliers and outliers. Several possible ρ functions have been
proposed in literature, as we are going to show in this section.

Let us now focus on the regularization term of Equation (22) to
show the relationship with the bilateral filter. To do so, we introduce
the following reweighted version of the regularization term, so that the
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minimization problem becomes:

min
I

∑
p∈S

∑
q∈N (p)

Gσs(||q − p||) ρ(Iq − Ip) (23)

To minimize Equation (23), one can iterate the following gradient
descent scheme:

It+1
p = It

p +
λ

|N (p)|
∑

q∈N (p)

Gσs(||q − p||) ρ′(It
q − It

p). (24)

By choosing ρ(s) = 1 − Gσr(s), we obtain:

It+1
p = It

p +
λ

|N (p)|
∑

q∈N (p)

Gσs(||q − p||) Gσr(I
t
q − It

p)(It
q − It

p). (25)

This equation has in fact some similarities with the bilateral filtering
expression, which corresponds to a weighted average of the data, that
we remind here:

It+1
p =

∑
q Gσs(||q − p||) Gσr(It

q − It
p)It

q∑
q Gσs(||q − p||) Gσr(It

q − It
p)

(26)

and, interestingly, it has been shown that Equations (24) and (26) are
indeed two equivalent ways to solve the same minimization approach
(see, e.g., [29]). Intuitively, one can remark that both formulas average
the same pixels using the same weights, and the only difference is the
weight of the center pixel It

p. The conclusion is that the bilateral filter
is a special case of a robust filter.

More generally, Durand and Dorsey [21] studied the bilateral filter
in the framework of robust statistics [29, 30] in a similar manner as the
work of Black et al. [11] on PDE filters. The authors showed that the
range weight can be seen as a robust metric, that is, it differentiates
between inliers and outliers. The bilateral filter replaces each pixel
by a weighted average of its neighbors. The weight assigned to each
neighbor determines its influence on the result and is crucial to the
output quality. In this context, robust statistics estimates if a pixel is
relevant, i.e., is an inlier, or if it is not, i.e., is an outlier. The strategy
followed by the bilateral filter is that pixels with different intensities
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are not related and should have little influence on each other, whereas
pixels with similar intensities are closely related and should strongly
influence each other. The way that this intensity difference actually
contributes is defined by the range weight. The most common choice is
a Gaussian function Gσr .

However, Durand and Dorsey [21] have underscored that this Gaus-
sian function is only one of the possible choices among a variety of
robust weighting functions (cf. Figure 5.2-top), a.k.a. stopping func-
tions. These functions define the weights assigned to a pixel according
to its difference of intensity with the center pixel. For instance, a clas-
sical non-robust mean assigns the same weight to all pixels. In compar-
ison, robust functions have a bell profile that assign lower weights to
pixels with a different intensity. The differences lie in the fall-off rate
which defines how narrow is the transition between inliers and outliers,
and in the tail value: either non-zero, meaning that outliers still have
some limited influence, or zero, meaning that outliers are completely

Fig. 5.2 Qualitative illustration of the influence of weighting functions for image restoration.
The first two rows show respectively different choices of weighting functions ρ and their cor-
responding influence functions ρ′. These graphs were adapted from Black et al. [11]; Durand
and Dorsey [21]. Last rows show results obtained on the image presented in Figure 5.1 with
the corresponding weighting functions.
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ignored. This behavior is better observed on the influence function
(Figure 5.2-bottom) that shows the variations of the output depending
on the pixel intensity. The constant weight of classical averaging is not
robust because its influence function is unbounded which reflects the
fact that a single pixel can have an unlimited influence on the mean
value, e.g., a single very bright pixel can make the average arbitrarily
high. In contrast, robust influence functions are bounded, showing that
a single pixel cannot modify the output beyond a certain point. Some
robust functions such as the Gauss, Tukey, and Lorentz functions are
even redescending, reflecting the fact that pixels with a large intensity
difference are considered “irrelevant” and ignored, i.e., they have no
influence on the output.

Durand and Dorsey [21] showed that these concepts can be applied
to the bilateral filter and that the choice of the range function defines
how the pixels across are handled (see some results in Figure 5.2). For
instance, with the classical Gaussian function, pixels across edges still
have some influence though very limited; with a Tukey function, these
pixels would be ignored. However, according to Durand and Dorsey’s
experiments, the Gauss and Tukey functions perform better for their
tone-mapping operator. As far as we know, these options have not been
tested with other applications.

The energy function defined by robust norms is usually not con-
vex and can lead to local minima, similar to the local modes of
histograms discussed above. Which local minimum is most desirable
depends on the application. The bilateral filter performs one step
toward the minimum closest to the input value. This is usually desir-
able because most applications seek to smooth low-amplitude noise
while retaining local structure. However, some cases might require a
different treatment, such as impulse noise where the value of a pixel
can be severely corrupted. In this case, the robust statistics litera-
ture advocates initialization with an estimator that is very robust
but might not be very precise, such as the median. For impulse noise
removal, a median filter can be used to steer the bilateral filter at
a pixel toward a local minimum that is consistent with its neigh-
bors. In practice, this involves computing the range Gaussian based
on the difference between a pixel and the median-filtered image rather
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than the difference with the input pixel value. See Section 3.1.4 for
detail.

Remark. As connections can be established between robust statistics
and nonlinear PDEs, then we have also the same interpretations of
bilateral filtering as a “robust” nonlinear operator in the continuous
framework of PDEs. This is further explained in Section 5.3.

5.3 Bilateral Filtering is Equivalent Asymptotically to the
Perona and Malik Equation

Bilateral filtering smooths an image while preserving strong edges.
Interestingly, many research projects were carried out in the field of
nonlinear partial differential equations (PDEs) to achieve the same
goal, and some models such as [52] give results very similar to bilat-
eral filtering. In this section we revisit several contributions showing
the links between bilateral filtering and Perona–Malik model in the
discrete setting, and more generally between neighborhood filters and
PDE-based approaches in the continuous setting.1 Of course, the field of
PDE-based approaches is very large and one may find better approaches
than bilateral filtering depending on the application. Intensive research
has been carried out in this area, including nonlinear approaches for
image restoration (we refer to [2] for a review). Here we focus on the
nonlinear operators that are related to bilateral filtering.

5.3.1 Results in the Discrete Setting

Anyone studying PDE-based approaches for image processing came
across the famous nonlinear one by Perona and Malik [52]. Starting
from the heat equation and based on the remark that �I = div(∇I),
the authors proposed to introduce a weighting coefficient depending on

1 Until now, we considered an image as a discrete set of pixels. Instead, in this section, we
will need to consider an image defined continuously, i.e., an analog image where space is
no longer discretized. The motivation becomes clear when one needs for instance to define
a notion of derivative. Formally, keeping the same notations, this introduces only minor
changes in the formulation of the bilateral filter. The only difference here is that sums are
replaced by integrals: Positions p and q now vary on a continuous domain.
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the image gradient to prevent edges to be smoothed. Their model is
written in the continuous setting:

∂I

∂t
= div

(
c(||∇I||2) ∇I

)
, (27)

where c : [0,+∞[→]0,+∞] is a smooth decreasing function. We refer to
Perona and Malik [52] for more details.

In the discrete setting, Durand and Dorsey [21] showed that if the
bilateral filter is restricted to the four adjacent neighbors of each pixel,
then it actually corresponds to a discrete version of the Perona and
Malik [52] model.

This result has been extended by Elad [23] and Barash and Comani-
ciu [7] who have demonstrated that the bilateral filter can be seen as
the sum of several Perona–Malik filters at different scales, that is, the
image derivatives are computed with pixels at a distance, not only with
adjacent pixels.

5.3.2 Results in the Continuous Setting

Another important contribution came from Buades et al. [13] who
proved rigorously that for “small neighborhoods”, the Yaroslavsky
filter:

Yσs,σr [I](p) =
1

W (p)

∫
B(p,σs)

exp
(

−|I(q) − I(p)|2
σr2

)
I(q)dq, (28)

i.e., a bilateral filter using a box function as spatial weight, behaves as
the Perona–Malik filter. Such a result can only be established locally,
that is when “small neighborhoods” are considered, because the action
of PDE is very local (local structure is taken into account through
derivatives). So the proof of Buades et al. is based on an asymptotic
study which relies on the fact that the image is well approximated by its
second-order Taylor expansion; their result holds for any neighborhood
as long as it covers a sufficiently regular area such as a region of skin
or sky.

In this section, we present the results by Buades et al. [13] who
revisited the notion of the bilateral filter by studying the more general
“neighborhood filter” (see also [2] for more details). Here the notion of
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neighborhood must be understood broadly: neighboring pixels, neigh-
boring or similar intensities, or “neighboring neighborhoods.” Each of
these meanings will correspond to a specific filter. Interestingly, the
authors also proved the link between these filters and well-known PDEs
such as the heat equation and the Perona–Malik equation.

A general neighborhood filter can be described as follows. Let I be
an image to be filtered or denoised and let wσs : R

+ → R
+ and wσr :

R
+ → R

+ be two functions whose roles will be to enforce, respectively,
photometric and geometric locality (in Section 2, wσs and wσr are both
Gaussian kernels). Parameters σs and σr will measure the amount of
filtering for the image I. The filtered image at scale (σr,σs) is given by:

BF [I](p) =
1

W (p)

∫
S

wσr(|I(q) − I(p)|) wσs(||p − q||)I(q)dq,

where W (p) is a normalization factor.

W (p) =
∫

S
wσr(|I(q) − I(p)|) wσs(||p − q||)dq.

For simplicity we suppose that the image has been extended from the
domain image S (a rectangle) to the whole of R

2, by symmetry and
periodicity.

With this formalism we can easily recover the classical spatial linear
Gaussian filtering by choosing wσr ≡ 1 and wσs(t) = exp

( − t2

σs2

)
.

Now let us consider bilateral filtering. As mentioned before, the idea
is to take an average of the values of pixels that are both close in gray
level value and spatial distance. Of course many choices are possible
for the kernels wσr and wσs . Classical choices are:

wσr(t) = exp
(

− t2

σr2

)
,

and

wσs(t) = exp
(

− t2

σs2

)
or wσs(t) = χB(p,σs)(t),

where χB(p,σs) denotes the characteristic function of the ball of center
p and radius σs. With the former choice of wσs , we get the SUSAN
filter [59] or the bilateral filter [63] (see Section 2). With the latter
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choice of wσs , we recover the Yaroslavsky filter defined in Equation (28).
The SUSAN and Yaroslavsky filters have similar behaviors. Inside a
homogeneous region, the gray level values slightly fluctuate because of
the noise. Near sharp boundaries between a dark and a bright region,
both filters compute averages of pixels belonging to the same region as
the reference pixel: edges are not blurred.

Interestingly, the estimation of the residue Iσs,σr(p) − I(p) gives
some analogies with well-known PDEs. This is more precisely stated in
the following theorem.

Theorem 5.1. Suppose I ∈ C2(S) and let σs, σr, and α > 0 such that

σs,σr → 0 and σr = O(σs
α).

Let us consider the continuous functions g(t) = 1
3

texp(−t2)
E(t) for t �= 0,

g(0) = 1
6 where E(t) =

∫ t
0 exp(−s2)ds, and f(t) = 3g(t) + 3g(t)

t2
− 1

2t2
,

for t �= 0 and f(0) = 1
6 .

Then for x ∈ S,

• if α < 1, Yσs,σr [I](p) − I(p) ≈ ∆I(p)
6 σs

2,

• if α = 1, Yσs,σr [I](p) − I(p) ≈ [
g (σs

σr
||∇I(p)||)ITT (p)

+f(σs
σr

||∇I(p)||) INN (p)
]
σs

2,

• if 1 < α < 3
2 , Yσs,σr [I](p) − I(p) ≈ g(σs

1−α ||∇I(p)||)[ITT (p)
+3INN (p)

]
σs

2,

where ITT = D2u
(

∇I⊥
||∇I|| ,

∇I⊥
||∇I||

)
and INN = D2u

(
∇I

||∇I|| ,
∇I

||∇I||
)
.

We refer to [13, 12] for the proof of the theorem. It is not difficult,
somewhat technical, and relies on a Taylor expansion of I(q) and the
exponential function.

More interesting is the interpretation of this theorem. For α ranging
from 1 to 3

2 an iterated procedure of the Yaroslavsky filter behaves
asymptotically as an evolution PDE involving two terms respectively
proportional to the direction T = ∇I⊥(p)

||∇I(p)|| , which is tangent to the level

passing through p and to the direction N = ∇I(p)
||∇I(p)|| , which is orthogonal
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to the level passing through p. In fact, we may write:
Yσs,σr [I](p) − I(p)

σs2
= c1ITT + c2INN .

The filtering or enhancing properties of the model depend on the sign
of c1 and c2. Following Theorem 5.1, we have:

• If α < 1, then Yσs,σr [I](p)−I(p)
σs2

≈ ∆I(p)
6 , which corresponds to

a Gaussian filtering.
• If α = 1, the neighborhood filter acts as a filtering/enhancing

algorithm. As the function g is positive (and decreasing)
there is always a diffusion in the tangent direction, but
because the function I can take positive or negative values,
we may have filtering/enhancing effects depending on the
values of ||∇I(p)||. For example, if ||∇I(p)|| > aσr

σs
, where a

is such that I(a) = 0, then we get an enhancing effect. Let
us remark that because g(t) → 0 as t → ∞, points with large
gradient are preserved.

• If 1 < α < 3
2 , then σs

σr
tends to infinity and g(σs

σr
||∇I||) tends

to zero and consequently the original image is hardly deteri-
orated.

Finally, let us observe that when α = 1, the Yaroslavsky filter
behaves asymptotically like the Perona–Malik (Equation (27)) which
can be rewritten as:

∂I

∂t
= div(c(||∇I||2)∇I) = c(||∇I||2)ITT + b(||∇I||2)INN , (29)

where b(t) = 2tc′(t) + c(t). By choosing c(t) = g(
√

t) in (29) we get:
∂I

∂t
= g(||∇I||2)ITT + h(||∇I||2)INN ,

with h(t) = g(t) + tg′(t). We have h(t) �= f(t) but the coefficients in the
tangent direction for the Perona–Malik equation and the Yaroslavsky
filter are equal, and the functions h and f have the same behavior.
This explains why the bilateral filter and Perona–Malik models share
the same qualitative properties.2

2 In particular, both suffer from shock formation, a.k.a. over-sharpening, that creates aliased
edges from smooth ones. In Section 6.1.3 we will show neighborhood filter can be extended
to avoid this effect.
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Remark. The weight defined in the bilateral filter is inversely pro-
portional to the total distance (both in space and range, see also Figure
4.1) from the center sample. This idea is also similar in spirit to the
“Beltrami flow” proposed by Sochen et al. [61]. There, the effective
weight is the “geodesic distance” between the samples. More precisely,
the authors introduced the notion of image manifolds where an image
I is represented by a manifold M embedded in S × R:

(px,py) ∈ S �→ M(px,py) =
(
px,py, I(px,py)

) ∈ S × R (30)

With this representation, Barash [6] and Barash and Comanieiu [7]
demonstrated that bilateral filtering is based on the Euclidean distance
of S × R instead of the manifold geodesic distance. Note that Paris and
Durand [50] used a similar metric but in a signal-processing context (see
Section 4.5). Sochen et al. [60] have also shown that bilateral filtering is
an approximation to Gaussian filtering using the geodesic metric (i.e.,
using distances measured on the image manifold M) when the Gaussian
kernel is small.



6
Extensions of Bilateral Filtering

This section describes two main extensions of the bilateral filter.
First, variants have been developed to better handle gradients by
taking the slope of the signal into account or avoid the staircase
effect (Section 6.1). Second, bilateral filtering has been extended to
handle several images to better control the way edges are detected
(Section 6.2).

6.1 Accounting for the Local Slope

Humans consistently identify at least three visually distinctive image
features as edges or boundaries: a sharp, step-like intensity change,
a sharp, ridge- or valley-like gradient change, or both. The bilateral
filter is particularly good at preserving step-like edges, because the
range domain R filter averages together all similar values within the
neighborhood space domain, and also assigns tiny weights to dissimilar
values on the opposite side of the step, as shown in Figure 2.2 helps
maintain the step-like changes without smoothing.

Several researchers [14, 19, 23] have proposed extensions to the bilat-
eral filter to improve edge-preserving results for ridge- and valley-like
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edges as well. As explained by Elad [23] most noted that the bilateral
filter smooths images toward a piecewise constant intensity approxima-
tion of the original signal, and instead, each proposes smoothing toward
piecewise constant-gradient (or low curvature) results instead.

6.1.1 Trilateral Filter

Sharp changes in gradients and large, high-gradient areas degrade the
desirable smoothing abilities of the bilateral filter. As shown for one
image scan-line in Figure 6.1(b), we can approximate the extent of the
combined spatial and range filters as a rectangle centered around each
input pixel: position within this rectangle sets the weight assigned to all
its neighboring pixels. At ridge- or valley-like edges, gradients change
abruptly but intensities do not, as shown in Figure 6.2 feature (1).

filter filter filter

Fig. 6.1 Filter extent for one scan-line of an image.

smoothingsignal smoothing

Fig. 6.2 Difficult image features: (1) Ridge-like and valley-like edges, (2) high-gradient
regions, (3) similar intensities in disjoint regions.
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Applying the Bilateral filtering here is troublesome, because the rect-
angular filter extent encloses pixels that span the peak of the ridge or
valley, and the filter blends these intensities to form a “blunt” feature
instead of the sharp, clean edge with disjoint gradients. High-gradient
regions between ridge- or valley-like edges also reduce the bilateral fil-
ter’s effectiveness. As shown in Figure 6.1(b) and Figure 6.2 feature (2)
the spatial filter extent (the box width) has little effect, as only a narrow
portion of the input signal falls within the box, and the range filter’s
extent (box height) dominates the filtering. Figure 6.2 feature (3) also
shows that applying the bilateral filter near sharply peaked valley- or
ridge-like features may permit the spatial extent (box width) to include
disjoint portions of the input signal, averaging together image regions
that may belong to unrelated objects in the image.

The trilateral filter introduced by Choudhury and Tumblin [19]
addressed these problems by combining modified bilateral filters with a
pyramid-based method to limit filter extent. First, they applied a bilat-
eral filter to the image gradients to help estimate the slopes any sep-
arate image regions. Using these slopes, they “tilt” the filter extent of
a bilateral filter applied to image intensity; this affine transform of the
range filter, as shown in Figure 6.1(c), restores the effectiveness of the
spatial filter term. Finally, for each output pixel, they limit the extent
of this tilted bilateral filter to a connected set of pixels that share sim-
ilar filtered-gradient values. To reduce the substantial computing time
required to find these connected components, they describe a pyramid-
like structure suitable for fast evaluation. They also automatically set
all but two of the parameters of their filtering method, so that the user
control resembles the bilateral filter’s two parameters. Figure 6.3 shows

signal
smoothing

smoothing smoothing

Fig. 6.3 Large, smoothly varied gradients can cause “stair-stepping” in isotropic diffusion,
and weak smoothing in the bilateral filter. Higher order PDEs (e.g., LCIS) and bilateral
variants that smooth toward piecewise linear results form stairsteps in gradients instead.
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Fig. 6.4 Sample tone mapping results obtained with the trilateral filter (top two rows) and
sample mesh denoising (bottom row).

comparisons between the trilateral filter and other approaches. When
applied to tone mapping or mesh fairing, the trilateral filter results in
Figures 6.4 are visibly comparable or better than the bilateral filter
alone, but these improvements come at a high computational cost.
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6.1.2 Symmetric Bilateral Filter

Elad [23] proposes to account for the image “slope” by comparing the
intensity of the filtered pixel with the average of another pixel and its
symmetric point:

SBF [I]p =
1

Wp

∑
q∈S

Gσs(||p − q||) Gσr(||Ip − Is||) Is, (31)

where Is is the average between the pixel q and its symmetric with
respect to p, that is: Is = 1

2

(
I(q) + I(2p − q)

)
. As far as we know,

the performance of this extension is unclear because it has not been
extensively tested.

6.1.3 Regression Filter

The origin of the staircase effect can be explained with a 1-D con-
vex increasing signal (respectively a 1-D increasing concave signal)
(Figure 6.5). For each p, the range of points q such that I(p) − h <

I(q) ≤ I(p) is larger (respectively smaller) than the number of points
satisfying I(p) ≤ I(q) ≤ I(p) + h. Thus, the average value Yσs,h is
smaller (respectively larger) than I(p). As edges correspond to inflec-
tion points (i.e., points where I ′′ = 0) the signal is enhanced there; the
discontinuities become more marked.

To overcome this difficulty, Buades et al. [14] introduced an inter-
mediate regression correction to better approximate the signal locally.

pp-h p+h

p(x)

p(x-h)

p(x+h)

p p+hp-h

u(p)-v

u(p)

u(p)+v

Fig. 6.5 Why the Yaroslavsky filter (and similarly the bilateral filter) creates stepwise
functions: (a) The 1D illustrations show that for each p, the range of points q such
that I(p) − h < I(q) ≤ I(p), is larger than the number of points satisfying I(p) ≤ I(q) ≤
I(p) + h. Thus the average will be biaised. (b) This can be avoided with a locally linear
approximation.
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For every p in a 2D image, one searches for a triplet (a,b,c) minimizing:∫
B(p,σs)

w(p,q)(I(q) − aq1 − bq2 − c)2dq, (32)

where w(p,q) = exp −|I(q)−I(p)|2
σr2

, and then replacing I(p) by (apx −
bpy − c). Let us denote this improved version of the original
Yaroslavsky filter (see also Section 5.3.2) by Lσs,σr .

Theorem 6.1. Suppose I ∈ C2(S), and let σs,h > 0 be such that
σs,σr → 0 and O(σs) = O(σr). Let g be the continuous function defined

by g(0) = 1
6 and g(t) = 8t2e−t2−8te−t2E(t)+2E(t)2

t2(4E(t)2−8te−t2E(t))
, for t �= 0, where E(t) =∫ t

0 e−s2
ds. Then:

Lσs,σr [I](p) − I(p) ≈
[
1
6
Iξξ + g

(
σs

σr
||DI||

)
Iηη

]
σs

2. (33)

According to Theorem 6.1, the enhancing effect has disappeared;
the coefficient in the normal direction is now always positive and
decreasing. When the gradient is large, the weighting function in the
normal direction tends to zero and the image is filtered only in the tan-
gent direction. Figure 6.6 shows how regression can improve the results.

6.2 Using Several Images

6.2.1 Cross and Joint Bilateral Filter

Eisemann and Durand [22] and Petschnigg et al. [53] introduced simul-
taneously the cross bilateral filter, also known as the joint bilateral
filter, a variant of the bilateral filter that decouples the notion of edges
to preserve from the image to smooth. Given an image I, the cross
bilateral filter smooths I while preserving the edges of a second image
E. In practice, the range weight is computed using E instead of I:

CBF [I,E]p =
1

Wp

∑
q∈S

Gσs(||p − q||) Gσr(Ep − Eq) Iq,

with Wp =
∑
q∈S

Gσs(||p − q||) Gσr(Ep − Eq).

Figure 6.7 shows a simple use of cross bilateral filter to filter a low-light
picture.



6.2 Using Several Images 63

Fig. 6.6 The staircase effect can be eliminated with regression (see Section 6.1.3). First row
shows the results. Second rows represents the level lines giving a clear representation of the
image smoothness degree. Figure reproduced from Buades et al. [14].

Fig. 6.7 Simple example of cross bilateral filtering. The low-light image (a) is too noisy to
yield satisfying result if filtered on its own with bilateral filtering, see result in (b). Using a
flash picture of the same content (c) and cross bilateral filtering produces a better result (d).
Eisemann and Durand [22] and Petschnigg et al. [53] propose more sophisticated techniques
to handle this flash/no-flash scenario. Figure reproduced from Paris and Durand [50].

6.2.2 Dual Bilateral Filter

Bennett et al. [9] introduced dual bilateral filtering as a variant of
bilateral filtering and cross bilateral filtering. As the cross bilateral
filter, the dual bilateral filter takes two images I and J as input and
filters I1. The difference is that both I and J are used to define the
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edges whereas the cross bilateral filter uses only J . The dual bilateral
is defined by:

DBF [I]p =
1

Wp

∑
q∈S

Gσs(||p − q||) GσI (||Ip − Iq||) GσJ (||Jp − Jq||) Iq

(34)
The advantage of this formulation is any edge visible in I or J is taken
into account. Bennett et al. have demonstrated the usefulness of this
strategy in the context of low-light imaging where I is a classical RGB
video stream and J comes infrared cameras. The infrared camera cap-
tures more edges but lacks the colors of a standard RGB camera. In
this context, the strength of dual bilateral filtering is that the noise
properties of I and J can be accounted for separately by setting σI

and σJ independently.
From a formal standpoint, the dual bilateral filter can be interpreted

as a “normal” bilateral filter based on extended range data (I,J), that
is, the channels of I are “glued” to those of J to form a single image
with more channels. The range weight is then a classical one except
that it involves higher dimensional data. A minor difference with the
formulation of Bennett et al. is that the J data are filtered as well, but
one can discard them if needed to obtain the exact same result.



7
Conclusions

We have presented the bilateral filter, its applications, its variants,
reviewed our current theoretical understanding of it, and explained fast
algorithms to evaluate it. We believe that the success of the bilateral
filter lies in its combination of simplicity, good results, and efficient
algorithms. Although alternatives exist for each of these points, few, if
any, combine all these advantages.

The filter is very flexible because the range weight can be adapted to
accommodate any notion of pixel value difference, including arbitrary
color spaces, data from other images, or any information about the
relevance of one pixel to another pixel.

The original goal of the filter was denoising, in which case a small
spatial kernel suffices and the residual of the filter is discarded as the
noise component. In contrast, many new applications leverage the bilat-
eral filter to create two-scale decompositions that rely on large spatial
kernels and where the residual of the filter is preserved because it is
much more relevant to the human visual system. The use of large spa-
tial support has motivated a variety of accelerations schemes and the
bilateral filter can now be applied in real time to large inputs.
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Our review of bilateral filtering highlights several avenues for future
research. Although the simple edge model based on color difference that
subsumes the bilateral filter is often sufficient, there is room for a bet-
ter characterization of the important contours to be preserved. The
bilateral filter is also often used to extract the texture of an image.
This is another direction where a more sophisticated model of what
is texture would be beneficial. On the theoretical side, while the link
with PDEs is well understood when the spatial kernel is shrunk to
zero, the full implications of large spatial supports deserve more atten-
tion. While efficient implementations exist, they are often limited to a
low-dimensional range, and the extension of these techniques to higher
dimensional data is an exciting challenge. The bilateral filter is most
often employed to yield a two-scale decomposition, but fully multiscale
approaches deserve more investigation because the interplay between
the spatial and range terms make such definitions non-trivial.
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