3D Modeling

COS 426, Spring 2016
Princeton University
Syllabus

I. Image processing

II. Modeling

III. Rendering

IV. Animation

Rendering

(Michael Bostock, CS426, Fall99)

Image Processing

(Rusty Coleman, CS426, Fall99)

Modeling

(Denis Zorin, CalTech)

Animation

(Angel, Plate 1)
What is 3D Modeling?

- Topics in computer graphics
 - Imaging = *representing 2D images*
 - Rendering = *constructing 2D images from 3D models*
 - Modeling = *representing 3D objects*
 - Animation = *simulating changes over time*
Modeling

• How do we ...
 ◦ Represent 3D objects in a computer?
 ◦ Acquire computer representations of 3D objects?
 ◦ Manipulate computer representations of 3D objects?
Modeling Background

- Scene is usually approximated by 3D primitives
 - Point
 - Vector
 - Line segment
 - Ray
 - Line
 - Plane
 - Polygon
3D Point

• Specifies a location
 ○ Represented by three coordinates
 ○ Infinitely small

typedef struct {
 Coordinate x;
 Coordinate y;
 Coordinate z;
} Point;

(x,y,z)

Origin
3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude $||V|| = \sqrt{dx \ dx + dy \ dy + dz \ dz}$
 - Has no location

```c
typedef struct {
    Coordinate dx;
    Coordinate dy;
    Coordinate dz;
} Vector;
```

(dx,dy,dz)
3D Vector

• Dot product of two 3D vectors

\[V_1 \cdot V_2 = \|V_1\| \|V_2\| \cos(\Theta) \]
3D Vector

- Cross product of two 3D vectors
 - $V_1 \times V_2 = \text{vector perpendicular to both } V_1 \text{ and } V_2$
 - $||V_1 \times V_2|| = ||V_1|| \cdot ||V_2|| \cdot \sin(\Theta)$
3D Line Segment

• Linear path between two points
 ◦ Parametric representation:
 \[P = P_1 + t (P_2 - P_1), \quad (0 \leq t \leq 1) \]

```c
typedef struct {
    Point P1;
    Point P2;
} Segment;
```
3D Ray

- Line segment with one endpoint at infinity
 - Parametric representation:
 \[P = P_1 + t \mathbf{V}, \quad (0 \leq t < \infty) \]

```c
typedef struct {
    Point P1;
    Vector V;
} Ray;
```
3D Line

• Line segment with both endpoints at infinity
 ◦ Parametric representation:
 \[P = P_1 + t V, \quad (-\infty < t < \infty) \]

```c
typedef struct {
    Point P1;
    Vector V;
} Line;
```
3D Plane

• A linear combination of three points
3D Plane

- A linear combination of three points
 - Implicit representation:
 - \(P \cdot N - d = 0 \), or
 - \(ax + by + cz + d = 0 \)
 - \(N \) is the plane “normal”
 - Unit-length vector
 - Perpendicular to plane

```c
typedef struct {
  Vector N;
  Distance d;
} Plane;
```
3D Polygon

Set of points “inside” a sequence of coplanar points

typedef struct {
 Point *points;
 int npoints;
} Polygon;

Points are in counter-clockwise order
3D Object Representations

How can this object be represented in a computer?
3D Object Representations

How about this one?
3D Object Representations

This one?

H&B Figure 9.9
3D Object Representations

This one?

H&B Figure 10.46
This one? Stanford Graphics Laboratory
This one?
3D Object Representations

• Points
 ◦ Range image
 ◦ Point cloud

• Surfaces
 ◦ Polygonal mesh
 ◦ Subdivision
 ◦ Parametric
 ◦ Implicit

• Solids
 ◦ Voxels
 ◦ BSP tree
 ◦ CSG
 ◦ Sweep

• High-level structures
 ◦ Scene graph
 ◦ Application specific
Equivalence of Representations

• Thesis:
 ◦ Each representation has enough expressive power to model the shape of any geometric object
 ◦ It is possible to perform all geometric operations with any fundamental representation

• Analogous to Turing-equivalence
 ◦ Computers and programming languages are Turing-equivalent, but each has its benefits…
Why Different Representations?

Efficiency for different tasks

- Acquisition
- Rendering
- Manipulation
- Animation
- Analysis

Data structures determine algorithms
Why Different Representations?

Desirable properties depend on intended use

- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness
- etc.
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Range Image

Set of 3D points mapping to pixels of depth image

- Can be acquired from range scanner

Cyberware

Stanford

Range Image Tessellation Range Surface
Point Cloud

Unstructured set of 3D point samples

- Acquired from range finder, computer vision, etc

Polhemus

Microscribe-3D

Hoppe

Hoppe
3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Polygonal Mesh

Connected set of polygons (often triangles)
Subdivision Surface

Coarse mesh & subdivision rule

- Smooth surface is limit of sequence of refinements

Zorin & Schroeder
SIGGRAPH 99
Course Notes
Parametric Surface

Tensor-product spline patches

- Each patch is parametric function
- Careful constraints to maintain continuity

\[
x = F_x(u,v) \\
y = F_y(u,v) \\
z = F_z(u,v)
\]

FvDFH Figure 11.44
Implicit Surface

Set of all points satisfying: $F(x,y,z) = 0$

Polygonal Model Implicit Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes
3D Object Representations

<table>
<thead>
<tr>
<th>Points</th>
<th>Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range image</td>
<td>Voxels</td>
</tr>
<tr>
<td>Point cloud</td>
<td>BSP tree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surfaces</th>
<th>High-level structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonal mesh</td>
<td>Scene graph</td>
</tr>
<tr>
<td>Subdivision</td>
<td>Application specific</td>
</tr>
<tr>
<td>Parametric</td>
<td></td>
</tr>
<tr>
<td>Implicit</td>
<td></td>
</tr>
</tbody>
</table>
Voxel grid

Uniform volumetric grid of samples:

- Occupancy
 (object vs. empty space)
- Density
- Color
- Other function
 (speed, temperature, etc.)

- Often acquired via simulation or from CAT, MRI, etc.
BSP Tree

Hierarchical Binary Space Partition with solid/empty cells labeled

- Constructed from polygonal representations

Object

Binary Spatial Partition

Binary Tree

Naylor
Constructive Solid Geometry: set operations (union, difference, intersection) applied to simple shapes

FvDFH Figure 12.27

H&B Figure 9.9
Sweep

Solid swept by curve along trajectory

Removal Path

Sweep Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes
3D Object Representations

- **Points**
 - Range image
 - Point cloud

- **Surfaces**
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Application specific
Scene Graph

Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com
Apo A-1
(Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Architectural Floorplan
(CS Building, Princeton University)
Taxonomy of 3D Representations

3D Shape

- Discrete
 - Voxels, Point sets
- Continuous
 - Combinatorial
 - Topological
 - Mesh, Subdivision
 - Set Membership
 - BSP Tree, Cell Complex
 - Functional
 - Parametric
 - Bezier, B-Spline
 - Implicit
 - Algebraic
Equivalence of Representations

• Thesis:
 ◦ Each representation has enough expressive power to model the shape of any geometric object
 ◦ It is possible to perform all geometric operations with any fundamental representation

• Analogous to Turing-equivalence
 ◦ Computers and programming languages are Turing-equivalent, but each has its benefits…
Computational Differences

• Efficiency
 ◦ Representational complexity (e.g. surface vs. volume)
 ◦ Computational complexity (e.g. $O(n^2)$ vs $O(n^3)$)
 ◦ Space/time trade-offs (e.g. tree data structures)
 ◦ Numerical accuracy/stability (e.g. degree of polynomial)

• Simplicity
 ◦ Ease of acquisition
 ◦ Hardware acceleration
 ◦ Software creation and maintenance

• Usability
 ◦ Designer interface vs. computational engine
Modeling Operations

What can we do with a 3D object representation?

- Edit
- Transform
- Smooth
- Render
- Animate
- Morph
- Compress
- Transmit
- Analyze
- etc.

Digital Michelangelo

Pirates of the Caribbean

Thouis “Ray” Jones

Sand et al.
Upcoming Lectures

• Points
 ○ Range image
 ○ Point cloud

• Surfaces
 ○ Polygonal mesh
 ○ Subdivision
 ○ Parametric
 ○ Implicit

• Solids
 ○ Voxels
 ○ BSP tree
 ○ CSG
 ○ Sweep

• High-level structures
 ○ Scene graph
 ○ Application specific
Bonus Today...

Nora gives a brief introduction to modeling in Maya.

Maya free for students:
www.autodesk.com/education

Blender free for everyone:
www.blender.org

[www.eliwhitney.org]