Name:
Login Name:

Computer Science 426, $1^{\text {st }}$ Midterm

March 13, 2008

This test contains 6 questions, of equal weight, on 11 pages. Do all of your work on these pages (use the back for scratch space), giving the answer in the space provided. This is a closed-book exam - you may use one-page of notes with writing on both sides during the exam. Put your name on every page, and write out and sign the Honor Code pledge before turning in the test.
"I pledge my honor that I have not violated the Honor Code during this examination."

Question	Score
1	
2	
3	
4	
5	
6	
Total	

Q1. Image Processing

(a) Given a 5×1 gray-scale image I with the following pixel values:

$I:$| 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |

This image is now to be rescaled to a size of 5000×1, using nearest-neighbor sampling, bilinear sampling, and Gaussian sampling ($\sigma=500$), respectively. For each sampling type, sketch the resulting intensity profile of the rescaled image:

Nearest-neighbor sampling:

Bilinear sampling:

Gaussian sampling ($\sigma=500$):

(b) Assume you want to detect edges in a gray-scale image. Propose a 3×3 convolution filter $g_{\text {edge }}$ that has a maximum response at contrast edges of arbitrary orientation:

(c) Your image may contain noise that you want to remove before applying the edge detection filter from above. To this end, you want to blur the image with a convolution filter $g_{\text {blur }}$ before applying $g_{\text {edge }}$. How can the consecutive application of $g_{\text {blur }}$ and $g_{\text {edge }}$ be efficiently be sped up? (One sentence only.)
(d) Provide the formulae to combine two pixels colors A and B, with respective alphas α_{A} and α_{B}, to obtain an alpha-blended pixel color C and its new alpha value α_{C} according to the OVER composition rule:

$$
C=
$$

$$
\alpha_{C}=
$$

(e) List two (2) additional composition rules, other than OVER:

Q2. Transformations and Warps

(a) Consider transformations that move the gray \mathbf{F} to the $\operatorname{red} \mathbf{F}$ in the figure below.

Draw the simplest controls for a Beier-Neely warp that would cause this transformation.
(b) Write a 3×3 matrix that would express the transformation in (a), considering the origin to be the center of the grid and each square to be of unit size.
(c) Is there a 2×2 matrix that expresses the same transformation? If so, write it down; or if not, why not?
(d) Now consider the the transformation that would transform the gray \mathbf{F} to the blue \mathbf{F} :

													-
													-
													-

Is there a set of Beier-Neely controls that implements this transformation? If yes, draw the controls; if no, why not?
(e) What is the minimum size of a matrix that would be capable of expressing a shear in 3-D?

Q3. Volumetric Representations

(a) An object O be defined as the locus of all points in 3-D where a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ assumes negative values. What is such an object representation called?
(b) Given now two such representations f_{1} and f_{2} defining two objects O_{1}, and O_{2}, respectively. Prove that

$$
\left(f_{1} \cap f_{2}\right)(\boldsymbol{p}):=\max \left\{f_{1}(\boldsymbol{p}), f_{2}(\boldsymbol{p})\right\}, \quad \boldsymbol{p} \in \mathbb{R},
$$

defines a set operator \cap that computes the intersection between O_{1} and O_{2}.
(c) Propose a definition of the complement f^{C} of a representation f that swaps inside and outside of the object defined by f :

$$
f^{\mathrm{C}}(p):=
$$

(d) Provide a definition of the \cup operator to compute the union of two objects denoted by f_{1} and f_{2}. Hint: Naturally, your definition has to be consistent with the equation in (b) and your answer in (c), so that $\left(f_{1} \cup f_{2}\right)^{\mathrm{C}}=f_{1}^{\mathrm{C}} \cap f_{2}^{\mathrm{C}}$.

$$
\left(f_{1} \cup f_{2}\right)(\boldsymbol{p}):=
$$

(e) Outline the result of $f_{1} \backslash f_{2}$ (which is the same as $f_{1} \cap f_{2}^{\mathrm{C}}$) in the following 2-D cross section. f_{1} is plotted in blue, f_{2} is plotted in red. Plotted are curves of constant values, as in a topographic map:

(f) Now assume that f_{1} and f_{2} are two spherical basis functions that together define a blobby model. Outline the resulting model surface in the plot below. Hint: The denoted point q lies on that surface.

Q4. Meshes and Subdivision Surfaces

(a) What is a watertight mesh? (One sentence only!)
(b) Given a polygonal mesh stored as a winged edge data structure, how can you easily tell whether the mesh is watertight? (One sentence only!)
(c) Given a triangle mesh with n faces, m edges, and k vertices. How many faces, edges, and vertices remain after the edge collapse of one its internal (non-boundary) edges?
(d) "In any polygonal mesh, an ordinary vertex has always exactly 6 adjacent edges." True or false? Explain your answer in one sentence.
(e) The Loop subdivision scheme produces a tangent-continuous limit surface. How can one introduce creases into the limit surface, that is, how can the Loop subdivision scheme be extended to produce sharp ridges that are not tangent-continuous? (One or two sentences.)
(f) How are gaps in adaptive subdivision meshes prevented? Draw a picture and explain in one sentence.

Q5. Splines, Subdivision and Continuity

(a) For the following locations enter the degree of continuity ($\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2, \ldots$? $)$ in the space provided to the right:
(a.1) a point on the interior of a typical cubic Bezier curve?
(a.2) a "cusp" like the one in that atypical cubic Bezier curve drawn above?
(a.3) a "joint" in a cubic B-spline curve?
(a.4) a point roughly half way between two joints in a cubic B-spline curve?
(a.5) a joint in a cubic Bezier spline curve, with which the two neighboring control points are collinear?
(a.6) an "extraordinary point" on a Loop subdivision surface?
(a.7) a "non-extraordinary" point on a Loop subdivision surface.
(b) If your answers for (a.1) and (a.2) are the same, explain how that can be? If they are different, explain how that can be? (One or two sentences.)
(c) What kind of curve has all three of these properties: C2 continuity, local control, and interpolation of its control polygon?
(d) What is the effect of extraordinary vertices on the limit surface of the Catmull-Clark subdivision? (One sentence only.)

Q6. Miscellaneous

(a) Circle those of the following objects that be can modeled using a swept surface:
(a.1) a martini glass
(a.2) a cartoon hand
(a.3) a star fish
(a.4) a garden hose

(b) Write TRUE or FALSE after each of the following statements:

- A Loop subdivision surface lies within the convex hull of its control mesh.
- A butterfly subdivision surface lies within the convex hull of its control mesh.
- A voxel is a little cube of constant density.
(c) Why is blue used for blue-screen matting (instead of red, for example)? (One sentence.)
(d) Name one advantage and one disadvantage of marching tetrahedron over marching cubes.
(e) Computer games use BSPs to represent static scene geometry. A common problem is to find out whether an object is visible from a certain vantage point. This problem can be solved by connecting object and viewpoint with a line segment and recursively subdividing the line segment at the BSP's split planes-see the figure below for an example BSP with such a line segment (in red):

Whenever the recursive algorithm reaches a leaf node, the current line segment spans this spatial region associated with the node. When, during the recursive execution, do you know that the object is not visible from the chosen viewpoint?

