
Advanced Programming Techniques

C++ Survey Christopher Moretti

TIOBE Index April 2016

http://www.tiobe.com/tiobe_index

http://www.tiobe.com/tiobe_index

Trending … not so great

McJuggerNuggets

https://www.youtube.com/user/McJuggerNuggets

Halcyon Days of C
❖ Representation is visible

❖ Opaque types are an
impoverished workaround

❖ Manual creation and copying

❖ Manual initialization

❖ if you remember to do it!

❖ Manual deletion

❖ if you remember to do it!

❖ No type-safety

Charlie Fleming

No data abstraction mechanisms

http://parrotletsuk.typepad.com/wldlife_in_a_suburban_gar/

C++ as a Reaction to C
❖ A “Better” C

❖ Almost completely upwards
compatible with C

❖ Function prototypes as
interfaces (later added to
ANSI C)

❖ Reasonable data abstraction

❖ methods reveal what is
done, but how is hidden

❖ Parameterized types

❖ Object-oriented

C++ Origins
❖ Developed at Bell Labs ca. 1980 by

Bjarne Stroustrup
❖ “Initial aim for C++ was a language

where I could write programs that
were as elegant as Simula programs,
yet as efficient as C programs.”

❖ Commercial release 1985, standards
in 1998, 2014, and 2017(?)

❖ Stroustrup won the 2015 Dahl-
Nygaard Prize for contributions to
OOP (given by AITO).

https://www.bell-labs.com/about/stories-changed-world/bjarne-stroustrop-awarded-prize-c-language/

@humansky

https://twitter.com/humansky/status/456095524689817600

I really didn’t say everything I said!
With apologies to Yogi Berra

“C makes it easy to shoot yourself in the foot; C++
makes it harder, but when you do it blows your
whole leg off.”

“Within C++, there is a much smaller and cleaner
language struggling to get out. […] And no, that
smaller and cleaner language is not Java or C#.”

www.stroustrup.com quote checker

“There are only two kinds of languages: the ones
people complain about and the ones nobody uses”

“There are more useful systems developed in
languages deemed awful than in languages
praised for being beautiful--many more”

https://en.wikiquote.org/wiki/Yogi_Berra
http://www.stroustrup.com/bs_faq.html#really-say-that

C++: undersold as “C with Classes”
❖ Yes, classes, but also …

❖ Data abstraction.

❖ Operator and function overloading.

❖ Abstracted allocate/free

❖ Inheritance.

❖ Exceptions.

❖ Templates and a Standard Template Library.

❖ Library namespace.

+ = ???

C++ Classes

class Thing {
 public:
 //methods

 private:
 //variables
 //functions

};

Designed on OOP paradigm from
Simula67’s data protection and
abstraction:  
it should not be possible to determine
how methods are implemented,  
only what they do (via contract)

C++ Classes Under the Hood
❖ A C++ class is just a C struct!

❖ no overhead

❖ no "class Object" that everything derives from

❖ member functions are names with a hidden argument
pointing to specific instance

❖ definition is such that C++ can be translated into C

❖ That’s exactly what original C++ compiler did —
cfront

Under the Hood (Idealized)
class stack {
 int *stk;
 int *sp;
 int push(int);
};
stack::push(int n) {
 *sp++ = n;
}
stack::stack() {
 sp = stk = new int(100);
}

stk = new stack();

struct _stack {
 int *_stk;
 int *_sp;
};

stack__push(struct _stack *this, int n) {
 *this->_sp++ = n;
}

stack__stack(struct) {
 this = malloc(sizeof(struct stack));
 this->_sp = this->_stk
 = malloc(100 * sizeof(int));
 return this;
}

Under the Hood (excerpt)
main() {
 stack s1(10), s2;
 int i;
 for (i = 0; i < 10; i++) s1.push(i);
 for (i = 0; i < 10; i++) s2.push(s1.pop());
 for (i = 0; i < 10; i++) if (s2.pop() != i) printf("oops: %d\n", i);
}

(((((& __1s1)-> stk__5stack = (((int *)__nw__FUi ((sizeof (int))*
10)))), ((& __1s1)-> sp__5stack = (& __1s1)-> stk__5stack))), (((&
__1s1)))) ;

(((((& __1s2)-> stk__5stack = (((int *)__nw__FUi ((sizeof (int))* 100)
))), ((& __1s2)-> sp__5stack = (& __1s2)-> stk__5stack))), (((&
__1s2)))) ;

for(__1i = 0 ;__1i < 10 ;__1i ++)
((((*((& __1s1)-> sp__5stack ++)))= __1i)) ;
for(__1i = 0 ;__1i < 10 ;__1i ++)
((__2__X1 = (((*(-- (& __1s1)-> sp__5stack))))), ((((*((&__1s2)->
sp__5stack ++)))= __2__X1))) ;

for(__1i = 0 ;__1i < 10 ;__1i ++)
if ((((*(-- (& __1s2)-> sp__5stack)))) != __1i)
printf ((char *)"oops: %d\n",__1i) ;
((((__dl__FPv ((char *)(& __1s2)-> stk__5stack) , ((((0)), 0))) ,
0))) ;

((((__dl__FPv ((char *)(& __1s1)-> stk__5stack) , ((((0)), 0))) ,

Simple Stack Example (1)
class stack {
 private:
 int stk[100];
 int *sp; //points just above top
 public:
 int push(int);
 int pop();
 stack(); // constructor
};

int stack::push(int n) { // push implementation
 return *sp++ = n;
}
int stack::pop() { // pop implementation
 return *--sp;
}
stack::stack() { // constructor implementation
 sp = stk;
}
int main() {

stack s1, s2; // calls constructors
s1.push(1); // calls method
s2.push(s1.pop());

}

Simple Stack Example (2)
class stack {
 private:
 int stk[100];
 int *sp; //points just above top
 public:
 int push(int n) { return *sp++ = n; }

 int pop() { return *--sp; }
 stack() { sp = stk; }

};

int main() {
stack s1, s2; // calls constructors
s1.push(1); // calls method
s2.push(s1.pop());

}

Simple Stack Example (3)
class stack {
 private:
 int *stk; // allocated dynamically by constructor
 int *sp; // next free place
 public:
 int push(int);
 int pop();
 stack(); // constructor
 stack(int n); // constructor
 ~stack(); // destructor
};
stack::stack() {
 stk = new int[100]; sp = stk;
}
stack::stack(int n) {
 stk = new int[n]; sp = stk;
}
stack::~stack() {
 delete [] stk;
}

// ... declaring stack s calls stack(); leaving block calls s.~stack()

class stack {
 private:
 int *stk; // allocated dynamically by constructor
 int *sp; // next free place
 public:
 int push(int);
 int pop();
 stack(); // constructor
 stack(int n); // constructor (non-default)
 ~stack(); // destructor
};
stack::stack() {
 stk = new int[100]; sp = stk;
}
stack::stack(int n) {
 stk = new int[n]; sp = stk;
}
stack::~stack() {
 delete [] stk;
}

// ... declaring stack s calls stack(); leaving block calls s.~stack()

Implicit and Explicit Allocate/Delete
void implicit() {

int i;
stack s; // calls constructor stack::stack()
...

} // calls destructor s.~stack() implicitly upon leaving implicit()

void explicit() {
int *ip;
stack *sp;
ip = new int;
sp = new stack; // calls constructor stack::stack()
...
delete ip;
delete sp; // calls sp->~stack() explicitly

}

Simple Stack Example (3)
class stack {
 private:
 int *stk; // allocated dynamically by constructor
 int *sp; // next free place
 public:
 int push(int);
 int pop();
 stack(); // constructor
 stack(int n); // constructor
 ~stack(); // destructor
};
stack::stack() {
 stk = new int[100]; sp = stk;
}
stack::stack(int n) {
 stk = new int[n]; sp = stk;
}
stack::~stack() {
 delete [] stk;
}

// ... declaring stack s calls stack(); leaving block calls s.~stack()

Function Overloading

stack::stack();
stack::stack(int stacksize);
void f() {
stack s; // default stack::stack()
stack s1(); // same
stack s2(100); // stack::stack(100)
stack s3 = 100; // also stack::stack(100), but don’t do this

}

❖ Functions can have the same name if they take a
different number or different type of argument

Function Overloading
❖ Functions can have the same name if they take a

different number or different type of argument

#include <iostream>
using namespace std;

int id(int x) { cerr << “one "; return x; }
int id(double x) { cerr << “two "; return (int) x; }
int id(int x, int y) { cerr << “three "; return x; }
double id(int x, double y) { cerr << “four "; return (double) x; }

int main() {
 int i = id(3);
 i = id(3.);
 i = id(3,4);
 double d = id(3,4.);
 return 0;
}

[cmoretti@tux cpp]$ g++ over.cpp
[cmoretti@tux cpp]$./a.out
one two three four

Operator Overloading
❖ Almost every operator can be overloaded for new types,

both as an instance method and not:  
T T::operator+(double d) {...}  
T operator+(T t, double d) {…}

❖ Can’t re-define operators for built-in types  
int operator +(int, int)

❖ Overloading doesn’t change precedence or associativity

Operator Overloading (Ex1)
class complex {

 private:
 double re, im;
 public:
 complex(double r = 0, double i = 0) { re = r; im = i; }

 friend complex operator +(complex,complex);
 friend complex operator *(complex,complex);
};

complex operator +(complex c1, complex c2) {
 return complex(c1.re+c2.re, c1.im+c2.im);
}

int main() {
 complex a(1.1, 2.2), b(3.3), c(4), d;

 d = 2 + a;
}

//2 coerced to 2.0 (C promotion rule);
//then constructor invoked to make complex(2.0, 0.0)

References
❖ Access an object by name without making a copy of it

❖ Somewhere between Java references and C pointers

❖ Gets call-by-reference semantics without pointer mess

❖ “Secretly” a C pointer under the hood

void swap(int &x, int &y) {
int temp;
temp = x; x = y; y = temp;

}
swap(a, b); // pointers are implicit

Operator Overloading (Ex2)
class ivec { // vector of ints
 int *v; // pointer to an array
 int size; // number of elements
 public:
 ivec(int n) { v = new int[size = n]; }

 int& operator[](int n) { // checked
 assert(n >= 0 && n < size);
 return v[n];
 }
};

...
 ivec iv(10); // declaration
 iv[10] = 1; // checked access on left side of =

C++ I/O
❖ C I/O can be used in C++

❖ no typechecking

❖ no facility for new types

❖ Need something like Java

❖ basically everything.toString()

❖ IOStream Library

❖ Overloads << and >>

❖ Allows same syntax, type-
safety for both built-in and
user-defined types

Operator Overloading (Ex3)
❖ Overload << for out

❖ low precedence, left-assoc.:  
cout << e1 << e2 << e3 —> 
(((cout << e1) << e2) << e3)

❖ cout, cin, cerr by default
❖ Example with complex:

#include <iostream>
ostream& operator<<(ostream& os, const complex& c) {
os << "(" << c.real() << ", " << c.imag() << ")";
return os;

}

Operator Overloading (Ex3)
❖ Overload >> for in

❖ low precedence, left-assoc.:  
cin >> e1 >> e2 >> e3 —> 
(((cin >> e1) >> e2) >> e3)

❖ cout, cin, cerr by default

You wish to cin the world?
Planet earth;
cin >> earth;

cin >> var  
calls

istream& operator >>(istream&, var_type*)

Operator Overloading (redux)
❖ Overloading the assignment operator (=) is tricky …

❖ Let’s consider the vector example from earlier:  
class ivec { // vector of ints 
private: 
 int *v; // pointer to an array 
 int size; // number of elements 
public: 
 ivec(int n) { v = new int[size = n]; } 
 int& operator[](int n) { // checked 
 assert(n >= 0 && n < size); 
 return v[n]; } 
 //... (?)

❖ How do we go about implementing assignment?

❖ from “literal” (e.g. int array)? from another ivec?

Assignment from Literal
❖ Assignment is defined by a member function operator=

❖ x = y is syntactic sugar for x.operator=(y)

❖ Assignment is not the same as initialization: it changes
the value of an existing object.

ivec& operator= (const char* a) { //a is of form "1,2,3,4"
 delete [] v; // clean up prior value!
 size = tokens(a); // count commas + 1 or whatever
 v = split(a); // strtok and stuff, allocates v 
 return *this;
 }

❖ What about assignment from another ivec?

Function Overloading (redux)
❖ When an object is passed to a function, returned from a

function, or used as an initializer, a copy is made:  
Foo fidget(Foo f, int fidget_factor)

❖ This is achieved through a “copy constructor”, which
creates an object from an existing object of same class

❖ The natural way to do this would be … problematic:  
Foo(Foo s) {…}

❖ Instead, we can use references:  
Foo(Foo& s) {…} 

Assignment from Same Type
❖ Still defined by a member function operator=

❖ Still must be careful to clean up prior value.
ivec& operator= (ivec &iv) {
 delete [] v; // clean up prior value!

 v = new int[size=iv.size];
 for(int i = 0; i < size; i++)
 v[i] = iv[i]
 return *this;

 }

❖ What happens when you do this in your code:  
iv = “1,2,3,4,5”; 
iv = iv;

[cmoretti@tux cpp]$./iv
1 2 3 4 5
15548464 0 3 4 5

Assignment from Same Type
❖ Still defined by a member function operator=

❖ Still must be careful to clean up prior value  
… if it’s actually going away!

ivec& operator= (ivec &iv) {
 if(this != &iv) {
 delete [] v;

 v = new int[size=iv.size];
 for(int i = 0; i < size; i++)
 v[i] = iv[i] 
 }
 return *this;

 }

Inheritance (Comparative Approach)
❖ Java: tree rooted at Object 

C++: forest of classes

❖ Java: explicit inheritance with
extends keyword 
C++: no syntax requirement

❖ Java: only parent is directly
accessible without casts or
multi-level calls  
C++: arbitrary ancestor classes
are directly accessible

❖ Java: only one “visibility”.  
C++: can have private, protected,
or public inheritance  
(see next slide)

❖ Java: no multiple inheritance, but
can implement multiple
interfaces.  
C++: object can inherit from
multiple classes; but no interfaces
at all

❖ Minor difference in handling
calling of parent’s constructor  

class A
{
public:
 int x;
protected:
 int y;
private:
 int z;
};

class B : public A
{
 // x is public
 // y is protected
 // z is not accessible from B
};

class C : protected A
{
 // x is protected
 // y is protected
 // z is not accessible from C
};

class D : private A // 'private' is default for classes
{
 // x is private
 // y is private
 // z is not accessible from D
}; http://stackoverflow.com/a/1372858

http://stackoverflow.com/a/1372858

Template Classes
❖ C++’s take on compiler-time parameterized types/generics

❖ Specifies a class or function that is the same for many,
types with only difference being the type parameters

template <typename T> class vector {
 T *v; // pointer to array
 int size; // number of elements

 public:
 vector(int n=1) { v = new T[size = n]; }
 T& operator [](int n) {
 assert(n >= 0 && n < size);
 return v[n];
 }  
//...

};
vector<int> iv(100); // vector of ints
vector<complex> cv(20); // vector of complex
vector<vector<int> > vvi(10); // vector of vector of int
vector<double> d; // default size

Template Functions
❖ Template functions need not be in a template class:  
template <typename T> T max(T x, T y) { 
 return (x > y) ? x : y; 
}

❖ No need to specify types to use it: compiler will infer
from arguments and apply correct operations

❖ But note: no coercion!

❖ can’t make a call to max((double) x, (int) y)

Standard Template Library
❖ Developed by Alex Stepanov
❖ Library of general-purpose

containers and algorithms
❖ containers are designed as

template classes
❖ algorithms are designed to

operate on containers using
iterator-specified access

STL Iterators
❖ Similar to Java, but with more explicit pointers

❖ begin() end() ++iter *iter !=
#include <vector>
#include <iterator>
#include <iostream>
using namespace ::std;
int main() {
 vector<double> v;
 for (int i = 1; i <= 10; i++)
 v.push_back(i);
 vector<double>::const_iterator it;
 double sum = 0;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;
 cout << sum << endl;
}

STL Containers and Algorithms
❖ sequences and “adaptors” (higher-order ADTs)

❖ vector, list, slist, deque, stack, queue

❖ associative sets

❖ set, map, unordered_{map,set}, multi{map,set}

❖ generic algorithms

❖ search, find, count, min, max, copy, sort, union, etc.

❖ well-defined performance bounds (e.g. vectors are
O(1) access), and reasonably well optimized

Assorted C++11 Niceties
❖ nullptr

❖ type-safe and unambiguous replacement for NULL and 0 pointer values

❖ auto
❖ infers the type of x from the type of the initializing value  

auto x = val; 
replaces 
VeryLongTypeNameLikeWhatYouOftenSeeInJava x = val;

❖ range for  
for (v : whatever) ...  
replaces  
for (v = whatever.begin(); v != whatever.end(); ++v) ...

C++11 Implicit Iterators
❖ “Range for” loop, like Java’s “enhanced for” loop

#include <vector>
#include <iterator>
#include <iostream>
using namespace ::std;
int main() {
 vector<double> v;
 for (int i = 1; i <= 10; i++)
 v.push_back(i);
 vector<double>::const_iterator it;
 double sum = 0;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;
 cout << sum << endl;
}

for(double &d : v)
 sum += d;

#include <vector>
#include <iterator>
#include <iostream>
using namespace ::std;
int main() {
 vector<double> v;
 for (int i = 1; i <= 10; i++)
 v.push_back(i);
 vector<double>::const_iterator it;
 double sum = 0;
 for (it = v.begin(); it != v.end(); ++it)
 sum += *it;
 cout << sum << endl;
}

What to use, what not to use?
❖ Use

❖ classes
❖ const
❖ const references
❖ default constructors
❖ C++ -style casts
❖ bool
❖ new / delete
❖ C++ string type
❖ range for
❖ auto

❖ Use sparingly / cautiously
❖ overloaded functions
❖ inheritance
❖ virtual functions
❖ exceptions
❖ STL

❖ Don't use
❖ malloc / free
❖ multiple inheritance
❖ run time type identification
❖ references if not const
❖ overloaded operators (except for

arithmetic types)
❖ default arguments (overload functions

instead)

Some Resources
❖ Google Styleguide

❖ The Standard

❖ The C++ Bible

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://isocpp.org/
http://cppreference.com

 C++ Advice from Long Ago

A little learning is a dangerous thing,
Drink deep or taste not the Pierian spring:
There shallow draughts intoxicate the brain,
And drinking largely sobers us again.

Alexander Pope (1688-1747)
An Essay on Criticism, 1711

C++ Advice from Not-So-Long Ago

–Willa Chen ‘13

“For someone who has learned other
programming languages first, C++ feels like an

inelegant mixture between C and object-oriented
languages — both of which are fine by themselves.
I mean, I like smoothies. And I like tacos. But C++

feels like a taco-flavored smoothie.”

