
Advanced Programming Techniques

Database Systems Christopher Moretti

History
❖ Pre-digital libraries

❖ Organized by medium, size,  
shape, content, metadata

❖ Record managers (1800s-1950s)

❖ manually- indexed punched cards

❖ Navigational DBs (1950s-)

❖ records linked with references

❖ Relational DBs (1970s-)

❖ split data into normalized tables

❖ NoSQL DBs (2000s-)

Database Definitions
❖ Database (DB)

❖ Structured collection of data

❖ Abstract view of data collection

❖ Data semantics may not be parallel to data storage

❖ Database Management System (DBMS)

❖ Software infrastructure that constitutes a database

❖ Typically client-server architecture

Schema vs State
❖ Schema is a description of database

❖ structure, types, constraints

❖ changes only upon restructuring

❖ State is a snapshot of the data stored at a given time

❖ individual records

❖ changes potentially with every query

Why Databases?
❖ Centralized control of data

❖ Can reduce redundancy, increase efficiency

❖ Guarantees important properties:

Database ABCs, er … CABs
❖ CRUD - core database record operations

❖ Create, Read, Update, Delete

❖ ACID - core properties of relational db transactions

❖ Atomic, Consistent, Isolated, Durable

❖ BASE - a more relaxed db transaction paradigm

❖ Basic Availability, Soft-state, Eventual-consistency

Navigational Databases
❖ Hierarchical structure (IBM, early 1960’s)

❖ Data organized as a tree

❖ User follows links from root to find data

❖ Queries are biased by the root, link set

❖ Network structure (CODASYL, late 1960’s)

❖ Multi-parent as well as multi-child

❖ User follows pointers among records to find data

Relational Databases
❖ Edgar Cobb (early 1970’s)

❖ aim was to eliminate all links
❖ informally: set of tables

❖ formally: set of predicates
and constraints to define
relationships

❖ queries are unbiased, but can
still be tuned based on
anticipated/observed usage

Practical Options
Files

Don’t guarantee ACID  
Don’t guarantee BASE

MySQL, Oracle, PostgreS, etc.

NoSQL/NOSQL:
non-relational DBs,  
document collections,  
Key-Value and Column store

Typical DBMS Architecture

network
connection

browser

DB client

DB server

HTTP

query

HTML

response

Relational Schema Example
❖ Simplest DB has one table holding all data (e.g. spreadsheet)

❖ Relational: separate tables "related" by common attributes

❖ e.g. custid in custs matches custid in sales

❖ Schema: content and structure of the tables

❖ books: isbn title author price

❖ custs: custid name adr

❖ sales: isbn custid date price qty

❖ stock: isbn count

❖ Extract info via queries

Example Books Table

 isbn title author price

1234 MySQL DuBois 49.95

4321 TPOP K & P 24.95

2468 Ruby Flanagan 79.99

2467 Java Flanagan 89.99

A bit about database design …

Example thanks to Robert M. Dondero, Jr.

DB0
❖ BOOKS: isbn, title, authors, quantity
❖ ORDERS: isbn, custid, custname, street, city, state, zipcode, quantity

❖ Note lack of atomicity (authors), redundancy (customer info)

First Normal Form
❖ Table is 1NF iff each column contains only atomic values

❖ DB0 is not in First Normal Form

DB1
❖ BOOKS: isbn, title, quantity
❖ AUTHORS: isbn, author
❖ ORDERS: isbn, custid, custname, street, city, state, zipcode,quantity

❖ Now’s as good as any to think about keys. What are DB1’s candidates?

DB1 Primary Keys
❖ Choose among candidate keys — in this case, there’s only one choice

❖ Great. That eliminated lack of atomicity. Is there still redundancy?

Second Normal Form
❖ Table is 2NF iff 1NF && every non-key is functionally dependent on

primary key

❖ DB1 is not in Second Normal Form

DB2
❖ BOOKS: isbn, title, quantity
❖ AUTHORS: isbn, author
❖ CUSTOMERS: custid, custname, street, city, state ,zipcode
❖ ORDERS:  

isbn,  
custid,  
quantity

DB2 is in Second Normal Form

❖ Great. That eliminated lots of redundancy. But is there still any?

Third Normal Form
❖ Table is 3NF iff 2NF && every non-key is non-transitively dependent

on primary key (not functionally dependent on something else first)

❖ DB2 is not in Third Normal Form

DB3
❖ BOOKS: isbn, title, quantity
❖ AUTHORS: isbn, author
❖ CUSTOMERS: custid, custname, street, zipcode
❖ ZIPCODES: zipcode, city, state
❖ ORDERS: isbn, custid, quantity

DB3 is in Third Normal Form

❖ And so on … (next would be reduce same authors on different books)

Structured Query Language (SQL)
❖ General (select) query format: 
select column-names from tables where condition ;

❖ So:  
select * from books; 
select name, adr from custs; 
select title, price from books where price > 50; 
select * from books where author = "Flanagan"; 
select author, title from books where author like "F%"; 
select author, title from books order by author; 
select author, count(*) from books group by author; 
select author, count(*) as n from books group by author 
 order by n desc;

❖ Query result is, itself, a table

Multiple-table Queries / Joins
❖ If desired data comes from multiple tables, this implies

“joining” the tables together into a new big table from
which to produce the output
 select title, count from books, stock
 where books.isbn = stock.isbn;

 select * from books, sales
 where books.isbn = sales.isbn
 and books.author like "F%";

 select custs.name, books.title
 from books, custs, sales
 where custs.id = sales.custid
 and sales.isbn = books.isbn;

 select price, count(*) as count from books
 where author like 'F%'
 group by author order by count desc;

Beyond “select”
❖ SQL can, of course, do much more than simply select

data from an existing table

❖ Warning: different DBs have annoying little
inconsistencies about syntax, semantics, performance,
but in general garden-variety SQL will work fine.

insert into sales values(‘1234','44','2008-03-06','27.95');

update books set price = 99.99 where author = "Flanagan";

delete from books where author = "Singer";

Our construction yields this effective query:
select * from books where author = 'x';

update books set price = $1.00 where author like 'K%'; --'

http://xkcd.com/327/

Suppose a system does this query:
select * from books where author = ‘{{form_content}}’;

Let’s specially construct form_content to do our bidding (a la COS217’s buffer overflow):  
x’; update books set price = $1.00 where author like ‘K%’; --’

http://xkcd.com/327/

SQL Injection Attacks

select * from books where author = ‘’ or ‘1’==‘1’

select * from books where author = ‘x’; drop table books; -- ’

select * from books where author = 'x';
update books set price = $1.00 where author like 'K%'; -- ’

http://bit.ly/1SRv8xP

http://bit.ly/1SRv8xP

SQL Injection Protection

www.bobby-tables.com

Prepared statements and parameterized queries:
Details vary by language, DB library: ? for SQlite, %s for MySQL, etc.
query=‘select * from books where author = ?’
mycursor.execute(query, param)

Django and other frameworks generally do this for you.

Use functions for escaping, e.g.:
mysql_real_escape_string

http://www.bobby-tables.com

Database Access in Programs
❖ There are standard interfaces

❖ MS: ODBC (“Open Database Connectivity”)

❖ Java JDBC

❖ Drivers exist for all major databases, making
applications relatively independent of underlying DB

mysql oracle postgres

drv drv drv

Excel PHP

ODBC
API

MySQL Program Interface
❖ MySQL interface exposes about 50 functions across many languages

❖ https://dev.mysql.com/doc/connector-python/en/
❖ https://github.com/felixge/node-mysql

import sys, fileinput, _mysql
db = _mysql.connect(host=“…”, user=“…”, db=“…”, passwd=“…”)
db.query(“…”)
res = db.store_result()
row = res.fetch_row()
while len(row) != 0:

print row
row = res.fetch_row()

https://dev.mysql.com/doc/connector-python/en/
https://github.com/felixge/node-mysql

import java.sql.*;

public class mysql {
 public static void main(String args[]) {
 String url = “jdbc:mysql://…”;
 try {
 Class.forName("com.mysql.jdbc.Driver");
 } catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: " + e.getMessage());
 }
 try {
 Connection con = DriverManager.getConnection(url, “…”, ”…”);
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("select * from books");
 while (rs.next())
 System.out.println(rs.getString("title") + " "
 + rs.getString("author"));
 stmt.close();
 con.close();
 } catch(SQLException ex) {
 System.err.println("SQLException: " + ex.getMessage());
 }
 }
}

MongoDB Program Interface (Flaskr)
from pymongo import Connection
db = Connection()['dbfile']
blog = db['blog']

def show_entries():
 entries = [dict(title=cur['title'], text=cur['text'])
 for cur in blog.find()]
 return render_template('show_entries.html', entries=entries)

def add_entry():
 blog.insert({"title": request.form['title'],
 "text": request.form['text']}) # BUG: injection?
 return redirect(url_for('show_entries'))
def clear():
 blog.remove()
 return redirect(url_for('show_entries'))

http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/

http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/

