Advanced Programming Techniques

D atab adSC Sys tem S Christopher Moretti

X/
0‘0

History
Pre-digital libraries

* Organized by medium, size,
shape, content, metadata

Record managers (1800s-1950s)

* manually- indexed punched cards
Navigational DBs (1950s-)

* records linked with references
Relational DBs (1970s-)

* split data into normalized tables

NoSQL DBs (2000s-)

Tuple {

Attribute

P

by, et R L
—

Relation

Database Definitons

+ Database (DB)

+ Structured collection of data
+ Abstract view of data collection
* Data semantics may not be parallel to data storage
* Database Management System (DBMS)
* Software infrastructure that constitutes a database

« Typically client-server architecture

Schema vs State

* Schema is a description of database

* structure, types, constraints

* changes only upon restructuring

« State is a snapshot of the data stored at a given time
* individual records

* changes potentially with every query

Why Databases?

Centralized control of data
Can reduce redundancy, increase etfficiency

Guarantees important properties:

"

= Py
‘e’

T — =

Database ABCs, er ... CABs

“ CRUD - core database record operations

“ (Create, Read, Update, Delete

“ ACID - core properties of relational db transactions

+ Atomic, Consistent, Isolated, Durable

* BASE - a more relaxed db transaction paradigm

“ Basic Availability, Soft-state, Eventual-consistency

Navigational Databases

+ Hierarchical structure (IBM, early 1960’s)
“ Data organized as a tree
+ User follows links from root to find data

« Queries are biased by the root, link set

+ Network structure (CODASYL, late 1960’s)

* Multi-parent as well as multi-child

« User follows pointers among records to find data

Relational Databases

Edgar Cobb (early 1970’s)
aim was to eliminate all links
informally: set of tables

formally: set of predicates
and constraints to define
relationships

queries are unbiased, but can
still be tuned based on
anticipated / observed usage

Practical Options

Don’t guarantee ACID :

Don’t guarantee BASE

E

MySQL, Oracle, PostgreS, etc.

Redis
. *'»m\“ Cassandra NoSQL /NOSQL.:
1M

non-relational DBs,

O ngo D B document collections,

mem b(] se sriak Key-Value and Column store

CouchDB

relax

T'ypical DBMS Architecture

browser
HTTP | ' HTML
network_ DB client
connection
....... aHéF;""m"[m"mm"m""mulm"mF;ngH;E""m"".
DB server

-

Relational Schema Example

+ Simplest DB has one table holding all data (e.g. spreadsheet)

+ Relational: separate tables "related” by common attributes

e oo custid in custs matches custid in sales

+ Schema: content and structure of the tables

+ pooks: 1sbn title author price
+ custs: custid name adr
» sales: 1SBbh cUstid aate price qty

+ stock: 1sbn count

+ Extract info via queries

Example Books Table

isbn title author price
1234 MySQL DuBois 49,95
4321 TPOP K& P 24.95
2468 Ruby Flanagan 79.99

2467 Java Flanagan 89.99

A bit about database design ...

Example thanks to Robert M. Dondero, Jr.

DBO

* BOOKS: isbn, title, authors, quantity

* ORDERS: isbn, custid, custname, street, city, state, zipcode, quantity

BOOKS

isbn title authors quantity

123 The Practice of Programming Kernighan, Pike 500

234 The C Programming Language Kernighan,Ritchie 800

345 Algorithms 1n C Sedgewick 650

ORDERS

isbn custid custname street city state zipcode quantity
123 222 Harvard 1256 Mass Ave Cambridge MA 02138 20

345 222 Harvard 1256 Mass Ave Cambridge MA 02138 100

123 111 Princeton 114 Nassau St Princeton NJ 08540 30

* Note lack of atomicity (authors), redundancy (customer info)

First Normal Form

* Table is 1NF iff each column contains only atomic values

BOOKS

isbn title quantity

123 The Practice of Programmi Kernighan, Pike 500

234 The C Programming Languagg Kernighan,Ritchig¢ 800

345 Algorithms in C Sedgewick ©50

ORDERS

isbn custid custname street city state zipcode quantity
123 222 Harvard 1256 Mass Ave Cambridge MA 02138 20

345 222 Harvard 1256 Mass Ave Cambridge MA 02138 100

123 111 Princeton 114 Nassau St Princeton NJ 08540 30

<+ DBO0 is not in First Normal Form

DB1

* BOOKS: isbn, title, quantity
* AUTHORS: isbn, author

* ORDERS: isbn, custid, custname, street, city, state, zipcode,quantity

BOOKS AUTHORS

isbn title quantity isbn author

123 The Practice of Programming 500 123 Kernighan

234 The C Programming Language 800 123 Pike

345 Algorithms in C ©50 234 Kernighan
234 Ritchie
345 Sedgewick

ORDERS

isbn custid custname street city state zipcode quantity

123 222 Harvard 1256 Mass Ave Cambridge MA 02138 20

345 222 Harvard 1256 Mass Ave Cambridge MA 02138 100

123 111 Princeton 114 Nassau St Princeton NJ 08540 30

* Now’s as good as any to think about keys. What are DB1’s candidates?

DB1 Primary Keys

* Choose among candidate keys — in this case, there’s only one choice

title quantity
The Practice of Programming 500
The C Programming Language 800
Algorithms in C 650

bn author
123 Kernighan
123 Pike

234 Kernighan
234 Ritchie
Sedgewick

isbn custi
123 222
345 222
123 111

custname street city state zipcode quantity
arvard 1256 Mass Ave Cambridge MA 02138 20

arvard 1256 Mass Ave Cambridge MA 02138 100
Princeton 114 Nassau St Princeton NJ 08540 30

* Great. That eliminated lack of atomicity. Is there still redundancy?

Second Normal Form

* Table is 2NF ift INF && every non-key is functionally dependent on

primary key
ORDERS , <«custname
Isbn
quantity o » street « City
custid
® zipcode =~ > state

isbn custi
123 222

345 222
123 111

custname street city state zipcode quantity
arvard 1256 Mass Ave Cambridge MA 02138 20
arvard 1256 Mass Ave Cambridge MA 02138 100
Princeton 114 Nassau St Princeton NJ 08540 30

“ DBI1 is not in Second Normal Form

DB2

BOOKS: isbn, title, quantity
AUTHORS: isbn, author
CUSTOMERS: custid, custname, street, city, state ,zipcode

ORD E RS : BOOKS AUTHORS
ISkH1{ isbn title quantity isbn author
(llStKj, 123 The Practice of Programming 500 123 Kernighan
quantity 234 The C Programming Language 800 123 Pike.
345 Algorithms in C 650 234 Kernighan
234 Ritchie

345 Sedgewick

ORDERS

isbn custid quantity
123 222 20

345 222 100

123 111 30

CUSTOMERS

custid custname street city state zipcode
111 Princeton 114 Nassau St Princeton NJ 08540
222 Harvard 1256 Mass Ave Cambridge MA 02138

333 MIT 292 Main St Cambridge MA 02142

DB2 1sin Second Normal Form

BOOKS _ AUTHORS
v title ISbn
S author

quantity
ORDERS CUSTOMERS
. <« custname
sbn antit
U
custid A Y > street < City
4 zipcode > state

* Great. That eliminated lots of redundancy. But is there still any?

Third Normal Form

* Table is 3NF iff 2NF && every non-key is non-transitively dependent
on primary key (not functionally dependent on something else first)

BOOKS _ AUTHORS _
v title ISsbn
author

quantity
ORDERS CUSTOMERS
: «/Ccustname
'sbn antit
U |
custid q Y > street v City
4 zipcode ~ state

+ DB2 is not in Third Normal Form

DB5

* BOOKS: isbn, title, quantity
* AUTHORS: isbn, author

+ ZIPCODES: zipcode, city, state
* ORDERS: isbn, custid, quantity

* CUSTOMERS: custid, custname, street, zipcode

BOOKS AUTHORS
isbn title quantity isbn author
123 The Practice of Programming 50 123 Kernighan
234 The C Programming Language 100 123 Pike
345 Algorithms in C 150 234 Kernighan
234 Ritchie
345 Sedgewick
ORDERS
isbn custid quantity
123 222 20
345 222 100
123 111 30
CUSTOMERS Z I PCODES _
custid custname street zipcode zipcode C1FY state
111 Princeton 114 Nassau St 08540 08540 Princeton NJ
222 Harvard 1256 Mass Ave 02138 02138 Cambridge Ma
02142 Cambridge MA

333 MIT 292 Main St 02142

DB3 i1sin Third Normal Form

BOOKS

: AUTHORS _
v title | Isbn

quantity

ORDERS

CUSTOMERS D
custname uantit

> street

ZIPCODES

4

Zipcode

A state

And so on ... (next would be reduce same authors on different books)

Structured Query Language (SQL)

* General (select) query format:
select column-names from tables where condition :

+* S0:
select ¥ from books;
select name, adr from custs;
select title, price from books where price > 50,
select * from books where author = "Flanagan”;
select author, title from books where author like "F%";
select author, title Troem books-erder by aUthor,
select author, count(x) from books group by author;

select author, count(x) as n from books group by author
order by n desc;

* Query result is, itself, a table

> SELECT * FROM users WHERE clue > 0
0 rows returned

Multiple-table Queries / Joins

« If desired data comes from multiple tables, this implies
“joining” the tables together into a new big table from

which to produce the output

select title, count from books, stock
where books.isbn = stock.isbn;

select x from books, sales
where books.isbn = sales.isbn
and books.author like "F%'":

select custs.name, books.title

from books, custs, sales
where custs.1d = sales.custid

and sales.isbn = books.isbn;

select price, count(x) as count from books

where author like 'F%'
group by author order by count desc;

Beyond “select”

* SQL can, of course, do much more than simply select
data from an existing table

« Warning: different DBs have annoying little
inconsistencies about syntax, semantics, performance,
but in general garden-variety SQL will work fine.

insert into sales values(‘1234','44"','2008-03-06"','27.95"');
update books set price = 99.99 where author = "Flanagan";

delete from books where author = "Singer";

http: / /xked.com /327 /

HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING SOME N A WAY Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. TABLE Stwdents; -~ 7 \;’

AND I HOPE

, ~OH.YES UTTLE - YOUVE LEARNED
WK BOBBY TABLES, t TOSANITIZE YOUR
m WE CALL HIM. DATARASE INPUTS.

Suppose a system does this query:
select x from books where author = ‘{{form_content}}’;

Let’s specially construct form_content to do our bidding (a la COS217’s buffer overflow):
X ;- Update -bogoks selt price = 51100 where-dibhor:Uike" K =2 ——

’ ’

Our construction yields this effective query:

select *x from books where author = 'x';
update books set price = $1.00 where author like 'K%'; ——

http://xkcd.com/327/

SOL Injection Attacks

Top 10 Attack Techniques

2015 vs 2014
0.0% 5.0% 10.0% 15.0% 2
OWN
17.5%
SQLI 12.8%
12.4%
AENT 14.8%
TACK 055>
O.7%
)DOS 9.3%
KING 2570 a0 http://bit.ly/1 SRv8XP

select x from books where author = ‘' or ‘1'==‘1"

{ ’

select *x from books where author x’"; drop table books; ——

select *x from books where author = 'x';
update books set price = $1.00 where author like 'K%'; — '

http://bit.ly/1SRv8xP

SOL Injection Protection

Prepared statements and parameterized queries:

Details vary by language, DB library: ? for SQlite, %S for MySQL, etc.
guery= select x from books where author = ?°
mycursor.execute(query, param)

Use functions for escaping, e.g.:
mysql_real_escape_string

Django and other frameworks generally do this for you.

www.bobby-tables.com

http://www.bobby-tables.com

Database Access in Programs

+ There are standard interfaces
« MS: ODBC (“Open Database Connectivity”)
+ Java JDBC

“ Drivers exist for all major databases, making
applications relatively independent of underlying DB

| Excel | e

/
m— 5

drv drv drv

mysql oracle postgres

MySQL Program Interface

MySQL interface exposes about 50 functions across many languages

* https:/ /dev.mysql.com/doc/connector-python/en/

* https:/ / github.com / felixge /node-mysql

Import sys, fikexnput; mysql
dib = mysgl.copnecktthost=":", user— "' db=".", passwd=—'. "}
db:queryls.”)
res = db.store result()
row = res.fetch_row()
while len(row) != O:
print row
row = res.fetch row()

https://dev.mysql.com/doc/connector-python/en/
https://github.com/felixge/node-mysql

import java.sqgl.x;

public class mysql {
public static void main(String args[]) {
String url = “jdbc:mysql://.."”;
try {
Class.forName("com.mysqgl. jdbc.Driver");
} catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: " + e.getMessage());
}
try {

Connection con = DriverManager.getConnection(url, “..”, "..");

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select x from books");
while (rs.next())
System.out.println(rs.getString("title") + " "

+ rs.getString("author"));
stmt.close();
con.close();

y catch(SQLException ex) A

System.err.println("SQLException: " + ex.getMessagel());

}
}
I

MongoDB Program Interface (Flaskr)

from pymongo import Connection
db = Connection()['dbfile']
blog = db['blog']

def show_entries():
entries = [dict(title=cur['title'], text=cur['text'])
for cur in blog.find()]
return render_template('show_entries.html', entries=entries)

def add_entry():
blog.insert({"title": request.form['title'],
"text": request.form['text']}) # BUG: injection?

return redirect(url for('show entries'))

def clear():

blog.remove()
return redirect(url for('show entries"'))

http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/

http://openmymind.net/2011/3/28/The-Little-MongoDB-Book/

