
Advanced Programming Techniques

Web Frameworks Christopher Moretti

But first, a word from our
Cupertino overlords …

iOS Development Legal Stuff
❖ For an iOS app, you need a

developer certificate to load your
app on a device. P and Apple
have an arrangement that lets you
do these experiments for free

❖ http://goo.gl/forms/Q5YjwJ1Pkj

❖ This will not let you put your app
on the App Store, but it's all you
need for local development and
testing with friends.

❖ Thanks to McGraw’s Janet Temos!

http://goo.gl/forms/Q5YjwJ1Pkj

Continuing with PU services to
make our projects work …

CAS Overview
❖ OIT-provided central authentication service

❖ User visits your homepage

❖ You kick them to CAS to log in (via libraries)

❖ If successful, CAS returns to you with “yes netid” 

❖ This is REQUIRED if you are using Princeton accounts

❖ in lieu of or in addition to your own accounts,  
to verify status for non-public resources, etc.

CAS Details

Sample usage in several languages: http://www.cs.princeton.edu/~cmoretti/cos333/CAS/

(Cryptic) OIT Details: https://sp.princeton.edu/oit/sdp/CAS/Wiki%20Pages/Home.aspx

<?php
require 'CASClient.php';
$C = new CASClient();
$netid = $C->Authenticate();

echo "Hello from the other side, $netid.";
echo "<P>Think of this as the main page ";
echo "after $netid has been authenticated.";
?> #!/usr/bin/python

import CASClient
C = CASClient.CASClient()
netid = C.Authenticate()
print "Content-Type: text/html"
print ""
print "Hello from the other side, %s\n" % netid
print "<p>Think of this as the main page after %s has been authenticated." % netid

http://www.cs.princeton.edu/~cmoretti/cos333/CAS/
https://sp.princeton.edu/oit/sdp/CAS/Wiki%20Pages/Home.aspx

Before we start on actual content …
Surprise!

http://www.cs.princeton.edu/~cmoretti/cos333/elevator.cgi

Web Projects: A problem
❖ Conventional web development:

❖ Write ad-hoc client code in HTML, CSS, js, etc. by hand

❖ Write ad-hoc server code in (anything) by hand

❖ Write ad-hoc access to database

❖ Iterate

❖ (every page, feature, app, etc. is new from scratch)

Worst Case

import MySQLdb
print "Content-Type: text/html"
print
print "<html><head><title>Books</title></head>"
print "<body>"
print "<h1>Books</h1>"
print ""
connection = MySQLdb.connect(user='me', passwd='x', db='my_db')
cursor = connection.cursor()
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC")
for row in cursor.fetchall():
 print "%s" % row[0]
print ""
print "</body></html>"
connection.close()

UI, business logic, DB interface are all jumbled in one place!

import SocketServer
import SimpleHTTPServer

class Reply(SimpleHTTPServer.SimpleHTTPRequestHandler):
 def do_GET(self):
 output=filter_by_query(self.path)
 self.wfile.write("query was %s\n" % self.path)

self.wfile.write(output)

def main():
 f = open(“courses.json”)
 courses = eval(f.read())
 if len(sys.argv > 1): PORT = int(sys.argv[1])
 else: PORT = 8080
 SocketServer.ForkingTCPServer('', PORT),
 Reply).serve_forever()

def filter_by_query(path):
...

and lots more functions!
main()

C’mon, I’d never do that!
import SocketServer
import SimpleHTTPServer

class Reply(SimpleHTTPServer.SimpleHTTPRequestHandler):
 def do_GET(self):
 output=filter_by_query(self.path) #business logic
 self.wfile.write("query was %s\n" % self.path)

self.wfile.write(output) #maybe marked up and styled?

def main():
 f = open(“courses.json”) #”database” access
 courses = eval(f.read())
 if len(sys.argv > 1): PORT = int(sys.argv[1])
 else: PORT = 8080
 SocketServer.ForkingTCPServer('', PORT),
 Reply).serve_forever()

def filter_by_query(path):
...

and lots more functions!
main()

Model-View-Controller Pattern
❖ A design pattern we’ve already seen (iOS)

❖ Model: structure of data (how is it defined, accessed?)

❖ View: the UI (what is on-screen?)

❖ View:Model can be a many-to-one relationship

❖ Controller: business logic (how does data flow?)

❖ event- or logic-based, gather input, prepare output

❖ Where to draw the lines, how to define interfaces?

Web Application Frameworks
❖ A response to the “ad hoc” problem above!

❖ Structure everything with MVC design, templates

❖ Pick the right pieces and the mechanics are (near-)
automatic, rather than laborious and error-prone

❖ You pick your data model, you design your standard
views (as templates), and you write your core logic

❖ But not interface, “glue”, “plumbing”, data flow

Web Application Frameworks
❖ Typically Client/Server: client sends request from form;

server parses request, retrieves info from DB in a
structured and safe way, formats result (maybe with
templates) and returns response.

❖ Often REST-like (server parses URL to call function)

❖ e.g. /add/data_to_add or /login/username

❖ Possible downsides: heavyweight, not always a model fit,  
hard to track/debug auto-generated content

Flask
❖ Python-based micro-framework

❖ Simple, low barrier-to-entry for initial tests

❖ Good example of a template engine

❖ Good example of app “paths” (“routes”)

Flask Hello World

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

Flask Survey Handler
from flask import Flask, request

app = Flask(__name__)

@app.route('/', methods=['POST','GET'])
def hello():
 s = ""
 for (k,v) in request.form.iteritems():
 s = "%s %s=%s
" % (s, k, v)
 return ‘Entry:
' + s

app.run()

http:///tmp/survey.html

Flaskr Miniblog Example
❖ Comes default as part of Flask documentation

❖ Created by Flask developer Armin Ronacher

❖ Examples of:

❖ URL routing

❖ Integrated CSS styling

❖ Templates with variables integrated into layout

❖ SQLite3 database stored locally

Memoizing Fibonacci Server
❖ Running example for several services

❖ Takes argument n, returns nth Fib number,  
memoizing result (pseudocode):
def get_n(n):
 if n < 0:
 return 0
 result = db.query "SELECT val from entries where num == n”
 if result != None:

 return result
 else:
 nm2 = get_n(n-2)
 nm1 = get_n(n-1)
 new = nm2+nm1
 db.query("insert into entries (num, val) values (?, ?)", (n, new))
 return new

Memoizing Fibonacci Server (Flask)
from sqlite3 import dbapi2 as sqlite3
from flask import Flask, render_template, request, _app_ctx_stack

@app.route(‘/add_numbers')
def add_numbers():
 num = request.args.get('num', 0, type=int)
 val = get_n(get_db(),num)
 return render_template('index.html',result=val)

@app.route('/clear')
def clear():
 init_db()
 return render_template('index.html')

@app.route('/')
def index():
 return render_template('index.html')

if __name__ == '__main__':
 init_db()
 app.run()

def init_db():
 with app.app_context():
 db = get_db()
 script = """
 drop table if exists entries;
 create table entries (
 num integer primary key,
 val text
);
 insert into entries (num,val) values (0,0);
 insert into entries (num,val) values (1,1);
 """
 db.cursor().executescript(script)
 db.commit()

Fibonacci Template (Flask)
{% extends "layout.html" %}
{% block body %}

<h1>Fibonacci Example</h1>
<p>
 <form action="http://localhost:5000/add_numbers" method=GET>
 <input type=text size=5 name=num>

 <div id=result style="width:55% ; word-wrap:break-word"> {{ result }} </div>

 <button type=submit value=“fib me!”>
 </form>
</p>
{% endblock %}

Django
❖ A more heavyweight Python

MVC framework.
❖ Adrian Holovaty, Jacob

Kaplan-Moss, Wilson Miner
Simon Willison ~2005

❖ Now used by Pinterest,
Instagram, Bitbucket, and
~50% of COS333 projects 

❖ Named for Django Reinhardt >

Django Overview
❖ Client code is still customary HTML, CSS, js

❖ Write a small number of templates to form all pages

❖ Template classes help separate form from content

❖ Server code is garden-variety Python

❖ Much is generated for you or “pluggable”

❖ Use restricted set of Python DB library calls

❖ Automatically escaped, safety-checked,  
and translated into SQL queries

Django Auto-generated Files
❖ models.py (database tables, information architecture)

❖ views.py (business logic, output generation)

❖ urls.py (mapping from web path to code function)

❖ settings.py (config info - DB type, module IDs, &c.)

❖ tests.py (testing framework (you can’t escape it!))

❖ admin.py (administrative console info)

❖ templates (presentation, filled with generated output)

Django DB Linking Example
DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': ‘/tmp/fib.db', ...

settings.py

from django.db import models

class Fib(models.Model):

 num = models.IntegerField(primary_key=True)

 val = models.TextField()

models.py

BEGIN;

CREATE TABLE “fib” (

“num” integer NOT NULL PRIMARY KEY

“val” text NOT NULL

);

(auto-generated)

Fibonacci Template (Django)
”layout.html"

<html>
<body>

<h1>All-terms Fibonacci Example</h1>
<p>

 {% for num in fib_list %}
 <li style="width:55% ; word-wrap:break-word"> {{ num }}

 {% endfor %}

</p>

</body>
</html>

URL Patterns
❖ Regexp to map URLs into functions and parameters

❖ Implemented as regexp, Python decorator, etc.

❖ Example:

❖ ${BASE_URL}/time/ should give current time

❖ ${BASE_URL}/time/plus/n should add n hours
urlpatterns = patterns('',
 (r'^time/$', current_datetime),
 (r'^time/plus/(\d{1,2})/$', hours_ahead),
)

Other Frameworks
❖ Ruby on Rails

❖ Google App Engine

❖ Node.js + Express

❖ Google Web Toolkit

❖ … (an ever-expanding list of others)

Google App Engine
❖ Web framework analogous to Django

❖ Server-side support for wide variety of languages

❖ Python, Php, Go, Java, …

❖ Can run locally for test/debug, deploy to appspot.com

❖ Google limits some server-side functionality

❖ DB limited to GQL or BigTable

❖ No system calls, threads, network access …

http://appspot.com

❖ Java-based framework (both server and front-end),
compiles to JavaScript for presentation

❖ Works using RPC that serializes to JSON

❖ + single language, code re-use (similar to Node.js)

❖ + browser compatible presentation for free

❖ + lots of widgets and plugins available free from Google

Caveat

– Feedback from a group in a previous year

“Although we were all most familiar with Java and
appreciated its abilities to integrate with various

libraries and the GWT framework, we would
definitely be willing to find ways to accomplish
our goals in another language in order to avoid

having to deal with GWT.”

Frameworks Summary
❖ Advantages

❖ Take care of repetitive parts easily; encourage “DRY”

❖ Automated code is less likely to have human error

❖ Every piece has its place: only need to change once

❖ Disadvantages

❖ You’re less likely to know what the #$&* is going on

❖ You’re out of luck if you don’t want things “how it is”

http://discuss.joelonsoftware.com/default.asp?joel.3.219431.12

http://discuss.joelonsoftware.com/default.asp?joel.3.219431.12

