
Advanced Programming Techniques

Software Engineering Christopher Moretti

Software Engineering
Computer Science

Theory

Methods

Algorithms

Abstract Problem Solving

Hardware Systems

SCIENCE

Practical Problem Solving

Software Development Processes

Refactoring
Intermediate-level Design

Human Organization
Client Services

Engineering

Software Engineering Stages
❖ User and System Requirements

❖ abstract requirements

❖ properties, anti-properties

❖ Modeling

❖ set of components and relationships

❖ interactions among components

❖ Design

Design Decision: Make -vs- Buy
❖ Off-the-shelf components already exist, require no long-

lead planning and design.  
BUT  
Off-the-shelf components almost certainly don’t match
requirements exactly. You aren’t in control of all factors.

❖ Specially-built systems/components can be tailored to
the specification (high compatibility / low reuse), at cost
of formal requirements planning, design,
implementation, maintenance.

Emergent System Properties
❖ A system is more than the sum of its parts

❖ functional emergence: the functionality is more than
the sum of the components (e.g. bicycle)

❖ non-functional emergence: behavior in operation

❖ reliability

❖ performance

❖ security

❖ robustness/repairability

Post-Deployment Stages
❖ Large systems should be built to have long lifetimes, thus:

❖ correct errors in original design

❖ replace components and reassess viability

❖ evolve use cases and organizational interaction

❖ Changes to one subsystem likely impact others

❖ modular independence is goal, but need “span” metric

❖ Reasons for original decisions may be unknown

❖ Decommissioning may be non-trivial

Methodologies

Traditional Waterfall Model

Traditional Waterfall Model
❖ In principle, next stage doesn’t

start until previous stage is
completely signed off

❖ In practice, they overlap as a
pipeline, or even a series of
small cycles (breaks model, but
fits better into real world).

❖ This is generally best suited
when requirements are
unlikely to change or evolve
during dev.

Agile Manifesto
Customer satisfaction by early delivery of valuable software
Welcome changing requirements, even in late development
Working software is delivered frequently (weeks rather than months)
Close, daily cooperation between business people and developers
Projects are built around motivated individuals, who should be trusted
Face-to-face conversation is the best form of communication (colocation)
Working software is the principal measure of progress
Sustainable development, able to maintain a constant pace
Continuous attention to technical excellence and good design
Simplicity—the art of maximizing work not done—is essential
Architectures, requirements, designs emerge from self-organization
Regularly, the team reflects on how to become more effective, and adjusts

http://www.agilemanifesto.org/principles.html

http://www.agilemanifesto.org/principles.html

Evolutionary Development
❖ Interleaved rather than separate steps, with strong

feedback loops encouraging rapid feedback across steps

❖ Requirements exploration: what is known? new adds?
re-assess suitability? build and test. (back to start)

❖ Focus on knowns and build out

❖ Throwaway prototyping: what isn’t understood yet?
prototype one/several plausible solutions/features/
versions. Assess.

❖ Focus on unknowns and coalesce

RUP
❖ Hybrid process model —

shouldn’t rely on one view:
❖ Dynamic process over time
❖ Static process at each time
❖ Emphasis on good practices

❖ Iteration is supported within
each phase of process

❖ Iteration is supported within
larger process as loop of phases

Source Code Management
MANDATORY for COS333 Design Project

Source Management Options

Basic Workflow
❖ Create a repository that contains all files

❖ (plus all old versions / bookkeeping)

❖ Each author checks out a working copy

❖ “copy — modify — merge model”

❖ edits in local working copy

❖ Commits/Check-ins are pushed back to the repository

❖ simple conflicts merged automagically

❖ true conflicts resolved manually

Subversion (svn)
❖ svn co file:///repository.url work.dir
❖ cd work.dir
❖ svn blame existing.txt
❖ $EDITOR existing.txt new.txt
❖ svn add new.txt
❖ svn up
❖ svn status
❖ svn diff existing.txt
❖ svn commit -m “fiddled existing, added new”

–Linus Torvalds

“… my hatred of CVS has meant that I see
Subversion as being the most pointless project ever
started. The slogan of Subversion for a while was
CVS done right, or something like that, and if you
start with that kind of slogan, there's nowhere you
can go. There is no way to do CVS right.”

“I'm an egotistical bastard, and I name all my
projects after myself. First Linux, now git.”

git
❖ git clone repository.url
❖ git blame existing.txt
❖ $EDITOR existing.txt new.txt
❖ git add new.txt
❖ git stash && git pull && git stash pop
❖ git status
❖ git diff existing.txt
❖ git commit -m “fiddled existing, added new”

Survive your last midterms, and have a great break!

NAAAAAAAAAG Design Document due 3/15
Website, Project Meetings,  

Elevator Pitches, starting 3/21

