
Advanced Programming Techniques

Python Christopher Moretti

PYTHON
PYTHON

xkcd.com/519

And the ten minutes striking up a conversation with that strange kid in homeroom sometimes
matters more than every other part of high school combined.

http://xkcd.com/519

xkcd.com/353
I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I'm leaving you.

http://xkcd.com/353

Randall is not Alone

Conor Myhrvold ’11 (A.B. GEO -> MIT -> Harvard -> Program
Manager at Uber) wrote an interesting article on The Fall of Perl

(Image: http://www.tiobe.com)(Article: http://bit.ly/1PBvhmq)

http://www.tiobe.com
http://bit.ly/1PBvhmq

– Guido van Rossum 
Developer/BDFL of Python

“I was looking for a 'hobby' programming project
that would keep me occupied during the week

around Christmas. […] I decided to write an
interpreter for the new scripting language I had

been thinking about lately […] that would appeal to
Unix/C hackers. I chose Python as a working title
for the project, being in a slightly irreverent mood
(and a big fan of Monty Python's Flying Circus).”

Why Learn/Use Python?
❖ High-level, expressive, readable

❖ Typical of scripts: weakly-typed, interpreted, quick-start

❖ Atypical of scripts: reasonable class and OOP structures

❖ Rich libraries, good documentation, active development

❖ Perhaps the best option to close the gap between  
AWK/shells and C/Java/etc.?

Simple Python Constructs
print ‘Hello, world!’ print “Hello, world!”

print r“No newline\n”, print ‘Two newlines\n’ print ‘One newline\n’,

>>> i='4.'
>>> i
'4.'
>>> float(i)
4.0

>>> bool(i)
True

>>> i=4
>>> i
4
>>> float(i)
4.0

>>> str(i)
‘4'

>>> bool(i)
True
>>> i=81
>>> chr(i)
'Q'

>>> i=4.
>>> i
4.0

>>> int(i)
4
>>> str(i)
‘4.0'

>>>bool(i)
True

Operators
❖ Generally like C:

❖ + - * / % & | ^ ~ << >> < > <= >= == !=

❖ Some differences:

❖ and or not

❖ comparison chaining is legal: 3 < x < 5

❖ no ++ -- ?:

❖ Some additional operators:

❖ ** // + in is

Control Flow
if bool:
 statement
elif bool’:
 statement’
else:
 statement’’

while bool:
 statement1
 statement2

for v in c:
 statement1
 statement2

while True:
 if bool:
 break
 else
 stmts

for i in range(m,n):
 if bool:
 continue
 else
 statements

try:
 statement
except (ThisExn,ThatExn):
 handle_this_or_that
except AnotherExn:
 handle_another
else:
 run_if_no_exception
finally:
 unconditionally_after

Regular Expressions

re.sub(re, rpl, str)

re.match(re, str)

re.split(re, str)

re.findall(re, str)

\d \D \w \W \s \S

re.search(re, str) find first match of re in str

test for anchored match

split str into a list of matches around re

list of all matches of re in str

replace all re in str with rpl

digit non-digit word non-word space non-space

Patterns are not necessarily matched leftmost-longest
Replacements are global by default

Warning!
>>> re.sub('in|inch', "X", s)
Xches and Xches X Xdia and Xdonesia
>>> re.sub('inch|in', "X", s)
Xes and Xes X Xdia and Xdonesia

Tuples
>>> ()
()
>>> (1,)
(1,)
>>> (1,2)
(1, 2)
>>> x = () + (1,) + ((True, "false"),2.7)
>>> x
(1, (True, 'false'), 2.7)
>>> len(x)
3
>>> len(x[1])
2
>>> y = (21, 63, 46, -2, float('nan'))
>>> y
(21, 63, 46, -2, nan)
>>> max(y)
63
>>> min(y)
-2
>>> z = (3,)*3
>>> z
(3, 3, 3)

>>> x=(True,False,(2.0,2))
>>> t,f,ttp = x
>>> t
True
>>> f
False
>>> ttp
(2.0, 2)
>>> t,f,(tf,ti) = x
>>> t
True
>>> f
False
>>> tf
2.0
>>> ti
2
>>> b=2
>>> c=4
>>> b,c=c,b
>>> b
4
>>> c
2

Lists
>>> l = []
>>> l.append("food")
>>> l
['food']
>>> l.append(["water","booze"])
>>> l
['food', ['water', ‘booze']]
>>> l+=["candy"]
>>> l
['food', ['water', 'booze'], ‘candy’]
>>> len(l)
3
>>> len(l[1])
2
>>> l[1]=['drinks']
>>> l
['food', ['drinks'], 'candy']
>>> l[1]='drinks'
>>> l
['food', 'drinks', 'candy']
>>> del l[1]
>>> l
['food', ‘candy']

>>> for i in l:
... print i
...
food
candy
>>> max(l)
‘food'
>>> 'beer' in l
False
>>> x=[]
>>> for i in range(0,10): x.append(i)
...
>>> x
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[1:]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[1:3]
[1, 2]
>>> x[-2]
8
>>> x[-2:]
[8, 9]
>>> x[3:-2]
[3, 4, 5, 6, 7]

List Comprehensions
>>> x=[]
>>> for i in range(0,10): x.append(i)
...
>>> x
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x= [i for i in range(10)]
>>> x
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> pow2 = [2**i for i in range(10)]
>>> pow2
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

Dictionaries
>>> words = {'call': 1, 'me': 1, 'ishmael': 1}
>>> words['whale'] = 1
>>> words['i']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'i'
>>> words.get('i',0)
0
>>> words.setdefault('i',0)
0
>>> words.setdefault('whale',0)
2
>>> words
{'me': 1, 'i': 0, 'whale': 2, 'call': 1, 'ishmael': 1}
>>> words['whale'] = words['whale'] + 1
>>> words
{'me': 1, 'whale': 2, 'call': 1, 'ishmael': 1}
>>> len(words)
5
>>> max(words)
'whale'
>>> words.keys()
['me', 'i', 'whale', 'call', 'ishmael']
>>> words.items()
[('me', 1), ('i', 0), ('whale', 2), ('call', 1), ('ishmael', 1)]
>>> dict([('whale',2),('ishmael',1)])
{'whale': 2, 'ishmael': 1}

Functions
def name(arg, arg, arg):
 statements of function

def div(num, denom):
 ''' computes quotient & remainder. denom should be > 0'''
 q = num / denom
 r = num % denom
 return (q, r) # returns a list

Functions are first-class. You can assign them, pass them to functions, return them from
functions

Parameters are passed call by value. You can can have named arguments, default values, and
arrays of name-value argument pairs. This is a bit tricky — use caution, use your references!

Variables in functions are local unless declared global, but globals are visible for reading.

Classes and objects
class Stack:
 def __init__(self): # constructor
 self.stack = [] # instance variable
 def push(self, obj):
 self.stack.append(obj)
 def pop(self):
 return self.stack.pop() # list.pop
 def len(self):
 return len(self.stack)

stk = Stack()
stk.push("foo")
if stk.len() != 1: print "error"
if stk.pop() != "foo": print "error"
del stk

Python Easter Eggs
>>> import __hello__
Hello world ...

Python Easter Eggs
>>> from __future__ import braces
 File "<stdin>", line 1
SyntaxError: not a chance

Python Easter Eggs
>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Python Easter Eggs
>>> print this.s
Gur Mra bs Clguba, ol Gvz Crgref

Ornhgvshy vf orggre guna htyl.
Rkcyvpvg vf orggre guna vzcyvpvg.
Fvzcyr vf orggre guna pbzcyrk.
Pbzcyrk vf orggre guna pbzcyvpngrq.
Syng vf orggre guna arfgrq.
Fcnefr vf orggre guna qrafr.
Ernqnovyvgl pbhagf.
Fcrpvny pnfrf nera'g fcrpvny rabhtu gb oernx gur ehyrf.
Nygubhtu cenpgvpnyvgl orngf chevgl.
Reebef fubhyq arire cnff fvyragyl.
Hayrff rkcyvpvgyl fvyraprq.
Va gur snpr bs nzovthvgl, ershfr gur grzcgngvba gb thrff.
Gurer fubhyq or bar-- naq cersrenoyl bayl bar --boivbhf jnl gb qb vg.
Nygubhtu gung jnl znl abg or boivbhf ng svefg hayrff lbh'er Qhgpu.
Abj vf orggre guna arire.
Nygubhtu arire vf bsgra orggre guna *evtug* abj.
Vs gur vzcyrzragngvba vf uneq gb rkcynva, vg'f n onq vqrn.
Vs gur vzcyrzragngvba vf rnfl gb rkcynva, vg znl or n tbbq vqrn.
Anzrfcnprf ner bar ubaxvat terng vqrn -- yrg'f qb zber bs gubfr!

Python Easter Eggs
>>> import antigravity

Python practice, problem solving with code, etc.

www.pythonchallenge.com NB: don’t confuse with
www.pythonchallenge.org

http://www.pythonchallenge.com
http://www.pythonchallenge.org

