
1

Functional programming Primer I

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

2

Characteristics of functional programming

• Primary notions:
functions and expressions (not commands);

• Primary operations (not sequencing):
• expression evaluation

• function formation and application

Basic function formation:

fun SimpleCompiler (input) = backend (frontend (input))

(types often inferred from types of operands and arguments)

Or: val SimpleCompiler = fn input => (backend o frontend) (input)

• expression evaluation in (top-level) interpreter: - 3+4;

• binding value to an identifier: - val x = 3+4;

3

Characteristics of functional programming cont’d

• Variables act as names, not storage cells (registers)

• Statically typed: eliminates many programming mistakes

• Higher-order functions (functions as args & return values)

• Inductive data types, pattern matching

• Parametric polymorphism, with type inference

• (possibly mutually) recursive functions instead of loops

• disciplined model of memory and exceptions

• expressive module system

• Libraries:

• SML Base library: http://sml-family.org/Basis

• SMLNJ library: http://www.smlnj.org/doc/smlnj-lib

• generally avoid side-effects whenever possible (exception: IO, …)

• referential transparency: can substitute expression that yield equal results

Guiding principles:

http://www.smlnj.org/doc/smlnj-lib

4

ML interpreter’s evaluation environment

Declarations are interpreted in context of previous declarations

• top-level declarations push item onto “stack” but no pop operation

• later declarations use most recent declaration

… …
x: 5, int

…
x: 5, int

addx: .., .=>.

…
x: 5, int

addx: .., .=>.

x: 5.0, real

val x = 5; fun addx y = x+y; val x = 5.0;

• a local declaration like let val x = e1 in e2 end temporarily extends

the current environment with a binding for x for the duration of e2, so

pops the binding for x from stack after e2 has finished

5

Composite expression formation: let-binding

• Naming of intermediate values, with explicit scope

let val n = e1 in e2 end

expression involving

previously introduced names
expression that may

also mention n

• Scope of n is e2: if there’s another surrounding introduction
of n, the “local” n hides the outer one only for the duration
of e2 (“outer” n is reestablished after e2).

• n is bound (to the value resulting from evaluating e1) in e2

Bound and free occurrences of variables

• Let-bindings, function parameters, and pattern matches
(below) bind variables/names in their respective scope.

• Occurrences of variables that are not bound are free.

• Note: an expression may contains bound and free
occurrences of the same name.

6

Example:
let x = let x = x*x in x+y end
in let x = x+1 in x end
end

Informal disambiguation:
let x = let x = x*x in x+y end
in let x = x+1 in x end
end

α-renaming

7

Example:
let x = let x = x*x in x+y end
in let x = x+1 in x end
end

Informal disambiguation:
let x = let x = x*x in x+y end
in let x = x+1 in x end
end

let a = let z = x*x in z+y end
in let b = a+1 in b end
end

• Renaming a bound variable does not change the
meaning of an expression

(one aspect of referential transparency)

ML types

8

• Base types:

• int: (example values: 1, 4, ~3, 0)

• reals (example values: 0.0, 3.5, 1.23E~10)

• Strings (“abc\n”)

• Tuples/products: A * B (in general: A1 * … * An)

• formation (1, 3.5) : int * real

• elimination: fst p, snd p, #i p

• empty product: unit, with value ()

• Function space A -> B

• formation: fn (x:A):B => e

• elimination: application f e

• Records: { lab1:A1, …, labn:An } (order “irrelevant”)

• Polymorphic types (types containing type variables ‘a, ‘b…)

• occur typically in combination with (higher-order) functions, and
inductive datatypes

Inductive data types

9

• Definition of recursive, polymorphic type:
datatype ’a bintr = LEAF of ’a | NODE of ’a bintr * ’a bintr;

Example: (polymorphic) binary trees

Inductive data types

10

• Definition of recursive, polymorphic type:
datatype ’a bintr = LEAF of ’a | NODE of ’a bintr * ’a bintr;

Example: (polymorphic) binary trees

• Constructing values using constructors
LEAF: ’a => ‘a bintree and NODE: ’a bintr * ’a bintr => ‘a bintr

Example: val mytree1 = LEAF 1; (*yields mytree1: int bintr*)

Inductive data types

11

• Definition of recursive, polymorphic type:
datatype ’a bintr = LEAF of ’a | NODE of ’a bintr * ’a bintr;

Example: (polymorphic) binary trees

• Constructing values using constructors
LEAF: ’a => ‘a bintree and NODE: ’a bintr * ’a bintr => ‘a bintr

Example: val mytree1 = LEAF 1; (*yields mytree1: int bintr*)

• Destructing/inspecting values by pattern matching
fun height t = case t of LEAF l => 1

| NODE (left, right) => 1 + max (height l, height r);

(*yields val height = fn : ‘a bintree -> int*)

Inductive data types

12

• Definition of recursive, polymorphic type:
datatype ’a bintr = LEAF of ’a | NODE of ’a bintr * ’a bintr;

Example: (polymorphic) binary trees

• Constructing values using constructors
LEAF: ’a => ‘a bintree and NODE: ’a bintr * ’a bintr => ‘a bintr

Example: val mytree1 = LEAF 1; (*yields mytree1: int bintr*)

• Destructing/inspecting values by pattern matching
fun height t = (case t of LEAF l => 1

| NODE (left, right) => 1 + max (height l, height r));

(*yields val height = fn : ‘a bintree -> int*)
recommendation: add parens!

Inductive data types

13

• Definition of recursive, polymorphic type:
datatype ’a bintr = LEAF of ’a | NODE of ’a bintr * ’a bintr;

Example: (polymorphic) binary trees

• Constructing values using constructors
LEAF: ’a => ‘a bintree and NODE: ’a bintr * ’a bintr => ‘a bintr

Example: val mytree1 = LEAF 1; (*yields mytree1: int bintr*)

• Destructing/inspecting values by pattern matching
fun height t = (case t of LEAF l => 1

| NODE (left, right) => height l + height r);

(*yields val height = fn : ‘a bintree -> int*)

• Datatypes don’t need to be recursive, 0-ary constructors ok:
datatype colors = RED | GREEN | BLUE;

recommendation: add parens!

Higher-order and mutually recursive functions

14

• Can use functions as parameters/arguments and return
values of functions

fun twice f x = f (f x); (*yields val twice = fn : (‘a -> ‘a) -> ‘a -> ‘a*)

fun add x = fn y -> x+y; (*yields val add = fn: int -> int -> int *)

• Definition of mutually recursive functions (used in parser)

datatype nat = Succ of nat | Zero;

fun even n = (case n of Zero => true | Succ m => odd m)

and odd n = (case n of Zero => false | Succ m => even m);

val SEVEN = Succ (… (Succ Zero)…);

even SEVEN;

val h = twice (add 3); (*yields val h = fn: int -> int *)

val z = h 7; (*yields val z = 13*)

Boolean conjunction is called andalso, not and

Higher-order and mutually recursive functions

15

• Can use functions as parameters/arguments and return
values of functions

fun twice f x = f (f x); (*yields val twice = fn : (‘a -> ‘a) -> ‘a -> ‘a*)

fun add x = fn y -> x+y; (*yields val add = fn: int -> int -> int *)

• Definition of mutually recursive functions (used in parser)

datatype nat = Succ of nat | Zero;

fun even n = (case n of Zero => true | Succ m => odd m)

and odd n = (case n of Zero => false | Succ m => even m);

val SEVEN = Succ (… (Succ Zero)…);

even SEVEN;

val h = twice (add 3); (*yields val h = fn: int -> int *)

val z = h 7; (*yields val z = 13*)

Boolean conjunction is called andalso, not and

References in ML

Type of “mutable references of type T”: ref T

• can hold values of type T

16

References in ML

Type of “mutable references of type T”: ref T

• can hold values of type T

• creation-”allocation+initialization”: ref e, where e:T
holds, i.e. e is an expression of type T

• evaluate e to a value v; then put v into a fresh ref cell

• typical use: let val x = ref e in … end

• type T has certain restrictions regarding polymorphism…

17

References in ML

Type of “mutable references of type T”: ref T

• can hold values of type T

• creation-”allocation+initialization”: ref e, where e:T
holds, i.e. e is an expression of type T

• evaluate e to a value v; then put v into a fresh ref cell

• typical use: let val x = ref e in … end

• type T has certain restrictions regarding polymorphism…

• read access: !e, where e:ref T

• evaluate e to a value v (v: ref T will be satisfied!)

• return the content u of cell v. u:T will hold!

18

References in ML

Type of “mutable references of type T”: ref T

• can hold values of type T

• creation-”allocation+initialization”: ref e, where e:T
holds, i.e. e is an expression of type T

• evaluate e to a value v; then put v into a fresh ref cell

• typical use: let val x = ref e in … end

• type T has certain restrictions regarding polymorphism…

• read access: !e, where e:ref T

• evaluate e to a value v (v: ref T will be satisfied!)

• return the content u of cell v. u:T will hold!

• write access: e:=e’ where e:ref T and e’:T

• evaluate e and e’, yielding values v: ref T and v’:T

• store v’ in v. Type of ref-cell remains unmodified!

19

References in ML

Type of “mutable references of type T”: ref T

• can hold values of type T

• creation-”allocation+initialization”: ref e, where e:T
holds, i.e. e is an expression of type T

• evaluate e to a value v; then put v into a fresh ref cell

• typical use: let val x = ref e in … end

• type T has certain restrictions regarding polymorphism…

• read access: !e, where e:ref T

• evaluate e to a value v (v: ref T will be satisfied!)

• return the content u of cell v. u:T will hold!

• write access: e:=e’ where e:ref T and e’:T

• evaluate e and e’, yielding values v: ref T and v’:T

• store v’ in v. Type of ref-cell remains unmodified!

20

No uninitialized memory cells!

Content guaranteed to be type-correct: no casting

No nil pointers – no nil pointer exceptions!

Practicalities

21

• Loading files:

• - use myfile.sml;

• myfile.sml may include subordinate use statements

• Opening (library) structures: - open Math;

• Quitting the interpreter:
Unix: ctrl-D Windows: ctrl-Z

Or call OS.Process.exit(OS.Process.success);

• Emacs mode: see info pages of SMLNJ

Compilation manager CM: see assignment1

Comprehensive details

22

Cambridge University Press

PU library

http://www.cs.cmu.edu/~rwh/smlbook

More links to books and doc

at http://www.smlnj.org

