
1

Topic 17: Memory Analysis

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Motivation

Do pointers p and q alias?

Can I eliminate this store instruction?

Can pointer x be NULL here?
Can I eliminate this load instruction?

Can these three store instructions be scheduled for the same cycle?

Can I swap the order of this load-store pair?

Can we exploit the distinctness of pointers to improve precision of analyses

and used for constant propagation, common subexpression elimination, etc.?

Is this string sanitized?

Does a pointer to my private key leak to code outside the crypto library?

Is my program memory-safe?

Flavors of memory analyses I

Alias analyses concern potential /definitive (non-) equality of two items:

• Can x and y point to the same address? Or are they definitely separate?

• Are x.f1 and y.f2 always pointing to the same object?

• May versus must:

• May alias: is it possible that x and y point to the same address?

• Must alias: do x and y necessarily/always point to the same address?

Flavors of memory analyses I

Alias analyses concern potential /definitive (non-) equality of two items:

• Can x and y point to the same address? Or are they definitely separate?

• Are x.f1 and y.f2 always pointing to the same object?

• May versus must:

• May alias: is it possible that x and y point to the same address?

• Must alias: do x and y necessarily/always point to the same address?

Points-to analyses concern a single item:

• can x be NULL?

• what objects might this method m be invoked upon?

• again, both questions have may and must variants

Flavors of memory analyses I

Alias analyses concern potential /definitive (non-) equality of two items:

• Can x and y point to the same address? Or are they definitely separate?

• Are x.f1 and y.f2 always pointing to the same object?

• May versus must:

• May alias: is it possible that x and y point to the same address?

• Must alias: do x and y necessarily/always point to the same address?

Points-to analyses concern a single item:

• can x be NULL?

• what objects might this method m be invoked upon?

• again, both questions have may and must variants

Can obtain alias information from points-to analysis:

• PtsTo(x) ∩ PtsTo(y) = Ø  x and y don’t alias

• PtsTo(x) ∩ PtsTo(y) ≠ Ø  x and y may alias

• PtsTo(x) = {a} = PtsTo(y)  x and y must alias, to location x

Flavors of memory analyses II

Flow-insensitive

• points-to/alias information holds

globally / in entire method

• simplifies analysis: order of

instructions irrelevant, conditionals,

loop conditions can be ignored

+ speeds up analysis

- reduces precision

Flow-sensitive

• points-to/alias information given

for each program point

• order of instructions relevant;

code traversal a la data flow

analysis, with join operation at

control flow merge points

+ more costly analysis

- increased precision
y = new A()

x = y

:

y = new A()

:

x and y must alias here, and so do x.f

and y.f, for all (pointer-valued) fields f of A

x and y definitely don’t alias here

SSA disambiguates the 2 defs of y, but object references may have

been copied elsewhere, and SSA doesn’t cover fields.

Flavors of memory analyses III

Information can be collected for

• program variables: PtsTo(x) = {a, b, null} , MustAlias(x, y) = true

• fields: PtsTo(C.f) = {a, null}, MayAlias (C.f, D.g) = false

• access paths: items of the form b.f1.f2….fn where fi are field names

and “base” b can again be

• a variable: MustAlias (x.f1.g2, y.g1.f3)

• a class name: MayAlias (C.f1.g2, D.g1.f3)

• a symbolic identifier of an object (specified by allocation site)

Fields f of A-objects allocated here

and g-fields of B-objects allocated

here definitely don’t alias here

captures the f fields of all (static? dynamic?) C-objects

x = new A(…)

:

y = new B(..)

:

if (z.f == v.g) …So need to know where the objects held in z

and y were allocated…(next slide)

Flavors of memory analyses IV

What information is associated with variables / fields / access paths?

• other variables / fields / access paths

• abstract locations (eg allocation sites)

Presence of merge points and need for conservativeness / approximation

suggests using sets of abstract locations etc, or other lattice structure

Flavors of memory analyses IV

What information is associated with variables / fields / access paths?

• other variables / fields / access paths

• abstract locations (eg allocation sites)

for (int i = 0; i < N; i++) {

x = new A(…)

myArray[i] =x

}

Presence of merge points and need for conservativeness / approximation

suggests using sets of abstract locations etc, or other lattice structure

How can different objects allocated at the same allocation site be

distinguished?

method A m () {

return new A(…)

}

clearly, different calls to m

yield different objects!

clearly, this loop yields N

different objects!

Flavors of memory analyses V

One solution: (call) context abstraction:

• refine allocation site by adding a static approximation of the

frame stack that is valid when the allocation is executed

list of method names

(reverse order, truncated) list of method names and the

(abstractions of) the objects

they were invoked upon

(reverse order, truncated)
list of method names and the

(abstractions of) the objects they were

invoked upon,

and the (abstractions of) the

arguments of these method calls

(reverse order, truncated)

Example: “k-CFA”

Often, truncation necessary

at length 2 or 3 ;-)

Challenges of memory analyses

• precision, precision, precision, precision!

Yes, but not blindly: need to balance precision and speed

• which code sections need to analyzed in detail?

• which transformations need /can exploit precision, and

how much do these transformations speed up the code

you are interested in

• is the application in a JIT compiler? Or are you compiling

code running in a data center, on millions of VM’s?

• modularity: how are analysis results of methods / classes / libraries best

communicated to the outside (procedure summaries, types, …)

Indeed, memory analyses often inter-procedural: worst case-assumptions

on (non-)aliasing of method parameters too approximate.

M. Hind: Pointer Analysis: Haven‘t We Solved This Problem Yet? Proceedings of the 2001

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering

(PASTE’01)}, pages = {54--61}, ACM 2001.

• speed, speed, speed!

Compiler construction – done and dusted?

New architectures:

• Multi-core: parallelization eg of array intensive scientific code (DSWP)

• Multi-core: coordination between threads on machines with weak

memory models

• GPU, FPGA, …

New applications

• Mobile (energy optimization)

• Data centers (energy)

• IoT / embedded systems

New requirements: high-assurance

• Correctness: preservation of source language meaning –

mathematically proven, mechanically checkable

New languages

• Domain specific, eg networking (SDN)

• General purpose (Go, Rust, …)

Compiler construction – done and dusted?

New architectures:

• Multi-core: parallelization eg of array intensive scientific code (DSWP)

• Multi-core: coordination between threads on machines with weak

memory models

• GPU, FPGA, …

New applications

• Mobile (energy optimization)

• Data centers (energy)

• IoT / embedded systems

New requirements: high-assurance

• Correctness: preservation of source language meaning –

mathematically proven, mechanically checkable

New languages

• Domain specific, eg networking (SDN)

• General purpose (Go, Rust, …)

Thanks!

