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Compiling functional and OO languages

General structure of compiler unchanged 

Main challenges in functional languages:

• semantic analysis: parametric polymorphism

• code generation: higher-order functions

Main challenges in object-oriented languages:

• semantic analysis classes and inheritance, 

access restrictions (private/public,…)

• code generation: method dispatch

Also: garbage collection (Java, ML, Haskell, …)



Parametric polymorphism -- motivation

• benefits for programmer: 

• code reuse; flexible libraries

• code clarity: same behavior/structure  same code

• modularity / information hiding

fun ilist_length (l: int_list) : nat := …

:

fun clist_length (l: char_list) : nat := …

fun slist_length (l: string_list) : nat := …

virtually identical 

definitions

fun list_length (l: α list) : nat := 

case l with nil  0 | (h::t)  1 + list_length t

α: type variable

h: α t: α list

• benefits for compiler: no code duplication  no duplicate analysis

Java

class List <T> {

…

}



Polymorphism – code generation strategies

• monomorphization: compiler identifies all possible instantiations,

generates separate code for each version, and calls the appropriate

version (type information at call sites)

+ conceptually simple – “core language” remains monomorphic

+ instantiations can use different representations, and be optimized

more specifically

- requires whole-program compilation (identify all instantiations);

hence no separately compiled (polymorphic) libraries!

- code duplication

• monomorphization at JIT compilation

- not every compiler / language / application suitable for JIT

• uniform representation for all types (“boxed”, ie one pointer

indirection – even for scalar types like int, float)

+ avoids code duplication and JIT overhead

- memory overhead; pointer indirection costly at runtime 

• “intensional types” / dynamic dispatch: maintain runtime

representations of types, use this to identify which code to invoke

- memory overhead, runtime overhead



Polymorphism – type analysis

• explicit polymorphism:

- position of universal quantification syntactically explicit

- in particular: non-top level quantification allowed
(nat (forall α, α list))  nat), forall β, (β tree forall α, (α x β))  nat

Very expressive! Only type checking!

• implicit polymorphism*: 

universal quantification only at top-level, hence syntactically redundant
forall α, (α list  nat), forall α β, (β tree (α x β))  (α x β)

Algorithmically more feasible (inference!), and sufficient for many application ( ML)

Intuitive interpretation of type variables: “for all”

* formal distinction between types and type schemes…



Polymorphism – type substitution

Substitution X [ t / α]: instantiate a type variable α in X to t

(α x β γ β) [ nat / α ] = nat x β γ β

(α x β γ β) [ nat / β ] = α x nat γ nat

(α x β γ β) [ (δ list) / γ ] = α x β δ list β

(α x β γ β) [ (α list) / γ ] = α x β δ list β

α is implicitly all-quantified here, too – substitution is 

“capture-avoiding”, like α-renaming of term variables.



Polymorphism – type inference a la Hindley-Milner

ML’s type system: types can be ordered by the “is-an-

instantiation-of” relationship

α x β γ β

nat x β γ β (α list) x β γ β α x nat γ nat…

(α list) x nat γ natnat x nat γ nat ……

(α list) x nat real  nat

…

(nat list) x nat real  nat

…

…



Polymorphism – type inference a la Hindley-Milner

Thus: two types are either

• incompatible, eg. int vs real, int vs int list, int vs α list, or

• unifiable: there are are substitutions that make them “equal”:

int vs int (substitutions: empty, empty)

int vs α (substitutions: empty, int / α)

int x α list vs α x β (substitutions: empty, [ int / α, α list / β] )

If they are unifiable, there is a (unique) most general type.



Polymorphism – type inference a la Hindley-Milner

Hindley-Milner type inference:

• recursively walk the code structure, as in lecture on type systems,

and return most general type scheme

• when necessary (eg for matching type of a function): 

perform unification – report type error if not-unifiable

fun W (Σ: context) (e:expr): (Type x Subst) option = … (*next slide ..*)

Algorithm W (cf function “infer” in slides on Types)

can now include TypeVars

assumptions; maps term variables to types

substitution; map type variables to types

Auxiliary function: Unify: (Type x Type) -> Subst option



Polymorphism – type inference a la Hindley-Milner

fun W (Σ: context) (e:expr): (Type x Subst) option =

case e of

…

| f a => case W Σ a of

Some (T, τ) => case W (Στ) f of

Some (U, σ) => case Unify (Uσ, T -> β) of

Some ω => Some (βω, τσω)

… (*all other cases: None*)

| … (*other cases of e*)

apply subst τ to types in Σ

apply subst τ to type U

fresh type variable

Damas, Luis; Milner, Robin (1982): Principal type-schemes for 

functional programs; 9th Symposium on Principles of programming 

languages (POPL'82). ACM. pp. 207–212.

Details:

For full ML, inference is DEXPTIME-complete - but in practice: linear/polytime



Higher-order functions

Functional languages: arguments and return values can be functions.

type intfun = int int

fun foo () : intfun =

return (fun z => z + 5);

var f = foo ();

f 2;

fun apply42 (f:intfun): int = return (f 42);

var q = apply42 foo

function parameter

is of functional type

return value 

is a function

function argument

is a function

Also with polymorphism: map (f: α β)  α list  β list



Higher-order functions

type intfun = int int

fun foo () : intfun =

return (fun z => z + 5);

var f = foo ();

f 2;

Q: where is the code for fun z => z + 5 

located, i.e. what address should we 

jump to when calling f 2?



Higher-order functions

type intfun = int int

fun foo () : intfun =

return (fun z => z + 5);

var f = foo ();

f 2;

A: have compiler generate a fresh name, bar, and emit code for the function

fun bar z => z + 5. Have foo return the address of / label bar.

Then use jump-register instruction (indirect jump) for call.

Q: where is the code for fun z => z + 5 

located, i.e. what address should we 

jump to when calling f 2?



Higher-order functions

type intfun = int int

fun foo () : intfun =

return (fun z => z + 5);

var f = foo ();

f 2;

A: have compiler generate a fresh name, bar, and emit code for the function

fun bar z => z + 5. Have foo return the address of / label bar.

Then use jump-register instruction (indirect jump) for call.

Q: where is the code for fun z => z + 5 

located, i.e. what address should we 

jump to when calling f 2?

Call to apply42 can pass 

address of foo as argument.

Use jump-register for call f 42.

fun apply42 (f:intfun): int = return (f 42);

var q = apply42 foo



But what about this?

fun add (n:int) : intfun =

let fun h (m:int) = n+m

in h end

fun twice (f: intfun): intfun =

let fun g(x:int) = f (f x)

in g end 

var addFive: intfun = add 5

var addTen : intfun = twice addFive

At runtime, calls add 5, add 42 should 

yield functions that behave like

h5 (m:int) = 5+m

h42 (m:int) = 42+m.



But what about this?

fun add (n:int) : intfun =

let fun h (m:int) = n+m

in h end

fun twice (f: intfun): intfun =

let fun g(x:int) = f (f x)

in g end 

var addFive: intfun = add 5

var addTen : intfun = twice addFive

At runtime, calls add 5, add 42 should 

yield functions that behave like

h5 (m:int) = 5+m

h42 (m:int) = 42+m.

Each hi outlives the stackframe of its 

static host, add, where hi would 

usually look up n following the static 

link, -- but add’s frame is deallocated 

upon exit from add.

Similarly, twice addFive should yield

gaddFive(x:int) = addFive (addFive x)

but gf needs to lookup f in stackframe of twice.

Combination of higher-order functions and nested function definitions conflicts with stack 

discipline of frame stack and with holding arguments and local variables in the stack frame.



Higher-order functions

type intfun = int int

fun add (n:int) : intfun =

let fun h (n:int) (m:int) = n+m

in h n end

fun twice (f: intfun): intfun =

let fun g (f:intfun) (x:int) = f (f x)

in g f end 

var addFive: intfun = add 5

var addTen : intfun = twice addFive

parameter lifting

type intfun = int int

fun h (n:int) (m:int) = n+m

fun add (n:int) : intfun = h n

fun g (f:intfun) (x:int) = f(f x)

fun twice (f: intfun): intfun = g f 

var addFive: intfun = add 5

var addTen : intfun = twice addFive

parameter lifting + block raising

= λ-lifting

Combination of higher-order functions and nested function definitions conflicts with stack 

discipline of frame stack and with holding arguments and local variables in the stack frame.



Higher-order functions

type intfun = int int

fun add (n:int) : intfun =

let fun h (n:int) (m:int) = n+m

in h n end

fun twice (f: intfun): intfun =

let fun g (f:intfun) (x:int) = f (f x)

in g f end 

var addFive: intfun = add 5

var addTen : intfun = twice addFive

parameter lifting

type intfun = int int

fun h (n:int) (m:int) = n+m

fun add (n:int) : intfun = h n

fun g (f:intfun) (x:int) = f(f x)

fun twice (f: intfun): intfun = g f 

var addFive: intfun = add 5

var addTen : intfun = twice addFive

parameter lifting + block raising

= λ-lifting

Need to pair up code pointers with data for host-function’s variables / parameters, 

ie construct representations of h n (like h 5, h 42) and of g f (like g addFive).

These structures need to be allocated on the heap.

Combination of higher-order functions and nested function definitions conflicts with stack 

discipline of frame stack and with holding arguments and local variables in the stack frame.



Closures

“code+data” pairs: representation of functions that have been provided 

with some of their arguments.

• “code”: label/address of code to jump to

• “data”: several representations possible

add 5

n: 5

add 42

n: 42

h5(33) h42(49)

Activation records held in heap, linked by static links

H
 E

 A
 P

a) pointer to allocation record of host function’s invocation: “static link”

• host function must still be heap-allocated to prevent stale pointers

• caller of closure creates activation record based on data held in 

closure, deposits additional arguments at known offsets and 

jumps to the code pointer provided in closure

• garbage collector can collect allocation records

m: 33  

sl:

code(h)

m: 49  

sl:

code(h)



Closures

b) pointer to a record (environment) in heap that holds the host function’s

escaping variables (ie exactly the variables the inner function might need)

• host function can be allocated on stack, receive its arguments as 

before, and hold non-escaping variables, spills, etc in stack frame

• New “local variable” EP points to environment

• host frame deallocated upon exit from host-function, but environment

of escaping variables not deallocated (maybe later GC’ed)

• closure’s data part points to environment

:

n:5
EP

add 5

n:5

code(h)

env:

H
 E

 A
 P

F
ram

eS
tack Closure for h5

Allocation records for

invocations to h5 are 

held on frame stack, 

and have pointer to

the closure.



Closures

b) pointer to a record (environment) in heap that holds the host function’s

escaping variables (ie exactly the variables the inner function might need)

• host function can be allocated on stack, receive its arguments as 

before, and hold non-escaping variables, spills, etc in stack frame

• New “local variable” EP points to environment

• host frame deallocated upon exit from host-function, but environment

of escaping variables not deallocated (maybe later GC’ed)

• closure’s data part points to environment

:

n:5
EP

add 5

n:5

code(h)

env:

H
 E

 A
 P

F
ram

eS
tack Closure for h5

Allocation records for

invocations to h5 are 

held on frame stack, 

and have pointer to

the closure.

Pitfall: need to prevent h from modifying n, so that repeated invocations 

h5(33), h5(22) don’t interfere  no assignments to variables etc



(Class-based) Object-oriented languages

Classes: enriched notion of types with support for
• record type containing first-order (“fields”) and functional 

(“methods”) components

• extension/inheritance/subclass mechanism

• allows addition of data (fields) and functionality (methods)

• allows modification of behavior: overriding of methods

(often, types of parameters and result cannot be modified)

• transitive ( class hierarchy), with top element OBJECT etc

• self/this: name to refer to data component in methods; can often 

be considered an (implicit) additional method parameter

• initialization/creation method for class instances (“objects”)

• limiting visibility/inheritance of fields/methods: private/public/final

Objects: runtime structures arising from instantiating classes 
• record on heap containing values for all fields

• invocation of methods: dispatch based on dynamic class, with

pointer to data field passed as argument of “self/this”

static
dynam

ic



Object-oriented languages: type checking

class B: extends A {

A super; // often implicit

int f1; // maybe with explicit explicit initialization

B b; // fields may be (pointers to) objects of class we’re defining

C c; // fields may be (pointers to) object of other classes, too

int foo (A a, D d) {…}

Tasks: • maintain class table (maps class names to classes/types, cf context)

• maintain inheritance relationship (check absence of cycles)

• check type constraints regarding overriding method definitions

• checking of method bodies: 

add entry for self to local typing context

• check adherence to private/public/final declarations

Class can refer to each other in cyclic fashion; split analysis into phases 



Object representation (single inheritance)

Single inheritance: each class extends at most one other class. 

(typically: classes other than OBJECT extend exactly one class)

Fields: objects of class C contain first the fields for 

objects of C’s superclass, A, then fields declared in C.

class A extends Object { int a }

class B extends A { int b; int c }

class C extends A { int d }

class D extends B { int e }

A

a=1

A

a=3

B

a=2

b=0

c=42

A-fields “duplicated” – not a 

pointer to an A-object!

C

a=4

d=8

B

a=99

b=2

c=-2

D

a=2

b=0

c=42

e=42
Avoids code duplication when implementing inherited methods: loads/stores to 

fields access same location, counted as offset from base of object



Static versus dynamic class of object

Typically, can assign an object of class C to a variable/field 

declared to be of type A, where A is a superclass of C.

class A extends Object { int a }

class B extends A { int b; int c }

class C extends A { int d }

class D extends B { int e }

var a_object : A := new C

A

a=1

C

a=4

d=8

method m (x:A) : T = {…} in class X:

body of m well-typed w.r.t. x:A, so can only 

access x.a. Passing a larger C object is not 

harmful: additional fields ignored. 

method k (…) : A = { … } in class Y:

k may return an object of any subclass of A –

eg body of k can be new C - but client only 

knows that the returned object has a field a.Cf. subtyping



Method selection typically based on dynamic class

class A extends Object { int a;

int f () = return (a +2) }

:

class C extends A { int d;

int f () = return d //overrides A.f() }

int m (x:A) {

return x.f() // code generation: jump to A.f?

} 

var c_obj := new C();

print m(c_obj); // should invoke C.f, not A.f()

A

a=1

C

a=4

d=8

How to achieve this:

• object contains reference to its “dynamic class”

- requires class/class names to be represented at runtime

• organize method dispatch table similar to fields (next slide)

subclass of its static class



Method dispatch based on dynamic class

class A extends Object { int a;  int f () = return (a+2) }

class B extends A { int b; int c;

A g() = … // additional method }

class C extends A { int d;

int f = return d //overrides A.f() }

int m (x:A) {

return x.f() // code generation: jump to A.f?

} 

MT

a=1

MT

a=4

d=8

MT

a=2

b=0

c=42

B-objects of dynamic class 

should call A.f, C-objects 

should call C.f

Code for f located 

at same offset, in 

all subclasses of A

A
label for 

code(A_f)

B
label for 

code(A_f)

Label for 

code(B_g)

C
label for 

code(C_f)Method

table

Now, the implementation of m follows it’s A-argument’s link to the 

method table, then knows where to find f. 

1 1 1

2



Final exam

Saturday, May 14th, Friend 004, 

7:30pm – 10:30pm

Don’t blame me…..
Closed book, laptop, iphone !



Final exam

Saturday, May 14th, Friend 004, 

7:30pm – 10:30pm

Don’t blame me…..

Cheat sheet: one A4 paper, double-sided.

Closed book, laptop, iphone !

Exam is cumulative: covers the entire semester

• lecture material incl today

• MCIML: except for last chapter and overly TIGER –

specific implementation details

• HW 1 – HW 9, incl. basic ML programming


