Topic 15: Static Single Assignment

COS 320

Compiling Techniques

Princeton University Spring 2016

Lennart Beringer

Def-Use Chains, Use-Def Chains

Many optimizations need to find all use-sites of a definition, and/or all def-sites of a use:

- constant propagation needs the site of the unique reaching def
- copy propagation, common subexpression elimination,...

Data structures supporting these lookups:

- def-use chain: for each definition d of variable r, store the use sites of r that d reaches
- use-def chain: for each use site u of variable r, store the def-sites of r that reach u

N definitions, M uses: $2^{*} \mathrm{~N}^{*}$ M relationships

Use-Def Chains, Def-Use Chains

Add the def-use relationships...

Use-Def Chains, Def-Use Chains

And these are just the def-use relationships...

Static Single Assignment

Static Single Assignment (SSA):

- improvement on def-use chains
- each register has only one definition in program
- for each use u of r, only one definition of r reaches u

How can this be achieved?

Static Single Assignment

Static Single Assignment (SSA):

- improvement on def-use chains
- each register has only one definition in program
- for each use u of r, only one definition of r reaches u

Rename variables consistently between defs and uses.

Why SSA?

Static Single Assignment Advantages:

- Dataflow analysis and code optimization made simpler.
- Variables have only one definition - no ambiguity.
- Dominator information is encoded in the assignments.
- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs. Distinguishing different defs makes use lists shorter and more precise:
- Eliminates unnecessary relationships:
less overlap.

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \text { do } A[i]=0 \\
& \text { for } i=1 \text { to } M \text { do } B[i]=1
\end{aligned}
$$

- No reason why both loops should be forced to use same register to hold index register.
- SSA renames second i to new register which may lead to better register allocation/optimization.
(Dynamic Single Assignment is also proposed in the literature.)

Conversion to SSA Code

Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

$$
\begin{aligned}
& r 1=r 3+r 4 \\
& r 2=r 1-1 \\
& r 1=r 4+r 2 \\
& r 2=r 5 * 4 \\
& r 1=r 1+r 2
\end{aligned}
$$

Conversion to SSA Code

Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

$$
\begin{array}{ll}
r 1=r 3+r 4 & r 1=r 3+r 4 \\
r 2=r 1-1 & r 2=r 1-1 \\
r 1=r 4+r 2 & r 1^{\prime}=r 4+r 2 \\
r 2=r 5 * 4 & r 2^{\prime}=r 5^{*} 4 \\
r 1=r 1+r 2 & r 1^{\prime \prime}=r 1^{\prime}+r 2^{\prime}
\end{array}
$$

Control flow introduces problems.

Conversion to SSA Form

Conversion to SSA Form

Use ϕ functions.

Conversion to SSA Form

Conversion to SSA Form

- ϕ-functions enable the use of r3 to be reached by exactly one definition of r3.
- Can implement ϕ-functions as set of move operations on each incoming edge.
- for analysis \& optimization: no implementation necessary: Φ just used as notation
- left side of Φ-function constitutes a definition; variables in RHS are uses
- ordering of argument positions corresponds to (arbitrary) order of incoming control flow arcs, but left implicit (could name positions using the labels of predecessor basic blocks...)
- elimination of Φ-functions/translation out-of-SSA: insert move instructions; often coalesced during register allocation
- typically, basic blocks have several Φ-functions - all near the top, with identical ordering of incomings arcs from control flow predecessors

Conversion to SSA Form

Naïve insertion:
add a Φ-function for each register at each node with ≥ 2 predecessors

Can we do better?

Conversion to SSA Form

Path-Convergence Criterion: Insert a ϕ-function for a register r at node z of the flow graph if ALL of the following are true:

1. There is a block x containing a definition of r.
2. There is a block $y \neq x$ containing a definition of r.
3. There is a non-empty path $P_{x z}$ of edges from x to z.
4. There is a non-empty path $P_{y z}$ of edges from y to z.
5. Paths $P_{x z}$ and $P_{y z}$ do not have any node in common other than z.
6. The node z does not appear within both $P_{x z}$ and $P_{y z}$ prior to the end, though it may appear in one or the other. (eg if $y=z$)

Assume CFG entry node contains implicit definition of each register:

- $r=$ actual parameter value
- $r=$ undefined
ϕ-functions are counted as definitions.

(use of r could be in successor of z)

Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) \&\&
(z does not contain a $p h i$-function for r) DO: insert $r=\phi(r, r, \ldots, r)$ (one per predecessor) at node z.

- Costly to compute. (3 nested loops, for $\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- Since definitions dominate uses, use domination to simplify computation.

Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) \&\& (z does not contain a $p h i$-function for r) DO: insert $r=\phi(r, r, \ldots, r)$ (one per predecessor) at node z.

- Costly to compute. (3 nested loops, for $\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Remember dominance: node \mathbf{x} dominates node w if every path from entry to w goes through \mathbf{x}. (In particular, every node dominates itself)

Dominance Frontier

Definitions:

- x strictly dominates w if x dominates w and $x \neq w$.
- dominance frontier of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

$D F(5)=?$

Dominance Frontier

Definitions:

- x strictly dominates w if x dominates w and $x \neq w$.
- dominance frontier of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

$D F(5)=\{4,5,10,11\}$

Dominance Frontier

Dominance Frontier Criterion:

Whenever node x contains a definition of a register \mathbf{r}, insert a Φ-function for r in all nodes z $\epsilon \mathrm{DF}(\mathrm{x})$.

Iterated Dominance Frontier

Criterion:
Apply dominance frontier condition repeatedly, to account for the fact that Φ-functions constitute definitions themselves.

Suppose 5 contains a definition of r.

Dominance Frontier

Dominance Frontier Criterion:

Whenever node x contains a definition of a register \mathbf{r}, insert a Φ-function for r in all nodes z $\epsilon \mathrm{DF}(\mathrm{x})$.

Iterated Dominance Frontier

 Criterion:Apply dominance frontier condition repeatedly, to account for the fact that Φ-functions constitute definitions themselves.

Suppose 5 contains a definition of r. Insert Φ-functions for \mathbf{r} in red blocks.

Dominance Frontier Computation

- Use dominator tree
- $D F[n]$: dominance frontier of n
- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $\left.D F_{u p}, c\right]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

Alternative formulation: $\mathrm{DF}_{\text {local }}[\mathrm{n}]=$ successors s of n with idom[s] <> n.

Dominance Frontier Computation

- Use dominator tree
- $D F[n]$: dominance frontier of n
- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $\left.D F_{u p}, c\right]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {local }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree.

Leaf p satisfies $D F[p]=D F_{\text {local }}[p]$ since children $[p]=\{ \}$.

Alternative formulation: $\mathrm{DF}_{\text {local }}[\mathrm{n}]=$ successors s of n with idom[s] <> n.

Dominator Analysis (slide 22 from "Control Flow")

- If d dominates each of the p_{i}, then d dominates n.
- If d dominates n, then d dominates each of the p_{i}.
- $\operatorname{Dom}[n]=$ set of nodes that dominate node n.
- $N=$ set of all nodes.
- Computation: starting point: n dominated by all nodes

1. $\operatorname{Dom}\left[s_{0}\right]=\left\{s_{0}\right\}$.
2. for $n \in N-\left\{s_{0}\right\}$ do $\operatorname{Dom}[n]=N$
3. while (changes to any $\operatorname{Dom}[n]$ occur) do
4. for $n \in N-\left\{s_{0}\right\}$ do
5. $\operatorname{Dom}[n]=\{n\} \cup\left(\cap_{p \in \operatorname{pred}[n]} \operatorname{Dom}[p]\right)$.

SSA Example

SSA Example

SSA Example

- IDom $[n]$ does not dominate anv other dominator of n.

SSA Example
dominate $\mathrm{n} \downarrow$

Node	$D O M[n]$	$I D O M[n]$
1	1	
2	1,2	-
3	$1,2,3$	
4	$1,2,3,4$	
5	$1,2,3,4,5$	
6	$1,2,3,4,6$	4
7	$1,2,3,4,5,7$	4
8	$1,2,3,4,5,7,8$	
9	$1,2,3,4,5,9$	
10	$1,2,3,4,5,9,10$	5
11	$1,2,3,4,5,11$	
		5

- Every node $n\left(n \neq s_{0}\right)$ has exactly one immediate dominator $I \operatorname{Dom}[n]$.
- $\operatorname{IDom}[n] \neq n$
Hence: last dominator of n on any path from $s 0$ to n is $[D o m[n]$
set of nodes that
- IDom $[n]$ does not dominate anv other dominator of n.

SSA Example

set of nodes that dominate $\mathrm{n} \downarrow$

Node	$D O M[n]$	$I D O M[n]$	
1	1		
2	1,2	-	
3	$1,2,3$	1	
4	$1,2,3,4$		2
5	$1,2,3,4,5$		4
6	$1,2,3,4,6$		4
7	$1,2,3,4,5,7$	5	
8	$1,2,3,4,5,7,8$		7
9	$1,2,3,4,5,9$		5
10	$1,2,3,4,5,9,10$	9	
11	$1,2,3,4,5,11$		5

- Every node $n\left(n \neq s_{0}\right)$ has exactly one immediate dominator $\operatorname{IDom}[n]$.
- $\operatorname{IDom}[n] \neq n$

Hence: last dominator of n on any path from so to n is $[\operatorname{Dom}[n]$

- IDom $[n]$ does not dominate anv other dominator of n.
$D F_{\text {local }}[n]=$ successors s of n with idom $[s]<>n$.

$D F_{\text {local }}[n]=$ successors s of n with idom $[s]<>n$.

SSA Example

- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $D F_{u p}[c]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {local }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree. Leaf p satisfies $D F[p]=D F_{\text {local }}[p]$.

SSA Example

- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $D F_{u p}[c]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {looal }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree. Leaf p satisfies $D F[p]=D F_{\text {local }}[p]$.

n	$\begin{gathered} \mathrm{UF}_{\mathrm{c}(\mathrm{D})}[\mathrm{Cl}] \end{gathered}$	DF[n]	$D F_{\text {up }}[\mathrm{n}]$

SSA Example

- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $D F_{u p}[c]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {local }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree. Leaf p satisfies $D F[p]=D F_{\text {local }}[p]$.

n	$U_{c(n)}$ $D F_{u p}[c]$	$D F[n]$	$D F_{u p}[n]$
1			
2			
3			
4			
5			
6	$\}$	--	
7			
8	$\}$	11	
9			
10	$\}$	11	
11	$\}$	4	

SSA Example

- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $D F_{u p}[c]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {local }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the inde whose idom is n.

SSA Example

- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $D F_{u p}[c]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {local }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the inde whose idom is n.

SSA Example

- $D F_{\text {local }}[n]$: successors of n in CFG that are not strictly dominated by n
- $D F_{u p}[c]$: nodes in dominance frontier of c that are not strictly dominated by c 's immediate dominator

$$
D F[n]=D F_{\text {local }}[n] \cup\left(\cup_{c \in \text { children }[n]} D F_{u p}[c]\right)
$$

- where children $[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree. Leaf p satisfies $D F[p]=D F_{\text {local }}[p]$.

n	$U_{c(n)}$	$D F[n]$	$D F_{u p}[n]$
1		--	
2	\vdots	--	\vdots
3	\vdots	--	\vdots
4		--	
5		4	
6	$\}$	--	--
7	11	11	\ldots
8	$\}$	11	11
9	11	11	\ldots
10	$\}$	11	11
11	$\}$	4	4

SSA Example

Insert $p h i$-functions:

11:
 $\epsilon \mathrm{DF}(\mathrm{x})$.

Dominance Frontier Criterion:

Whenever node x contains a definition of a register \mathbf{r}, insert a Φ-function for \mathbf{r} in all nodes \mathbf{z}

SSA Example

Insert $p h i$-functions:

3:

\downarrow

11: $\begin{aligned} \mathrm{r} 2 & =\Phi(\mathrm{r} 2, \mathrm{r} 2) \\ \mathrm{r} 3 & =\Phi(\mathrm{r} 3, \mathrm{r} 3)\end{aligned}$

Dominance Frontier Criterion:

Whenever node x contains a definition of a register \mathbf{r}, insert a Φ-function for r in all nodes z $\epsilon \operatorname{DF}(\mathrm{x})$.

(first round)

DF[n]41111

SSA Example

Rename Variables:

1. traverse dominator tree, renaming different definitions of r to $r_{1}, r_{2}, r_{3} \ldots$
2. rename each regular use of r to most recent definition of r
3. rename ϕ-function arguments with each incoming edge's unique definition

SSA Example

Rename Variables:

$$
\text { 4: } \begin{aligned}
\mathrm{r} 2^{\prime}=\Phi\left(\mathbf{r} 2, r 2^{\prime \prime \prime \prime \prime}\right) \\
\mathrm{r} 3^{\prime}=\Phi\left(\mathbf{r} 3, r 3^{\prime \prime \prime \prime}\right) \\
\text { branch } \mathrm{r} 3^{\prime}<100
\end{aligned}
$$

7

$8: \quad r 3^{\prime \prime}=r 3^{\prime}+1$
10: $\square \quad \mathrm{r} 3^{\prime \prime \prime}=r 3^{\prime}+2$

Dominator Tree

Alternative construction methods for SSA

Lengauer-Tarjan: efficient computation of dominance tree

- near linear time
- uses depth-first spanning tree
- see MCIML, Section 19.2

John Aycock, Nigel Horspool: Simple Generation of Static Single Assignment Form. $9^{\text {nd }}$ Conference on Compiler Construction (CC 2000), pages 110-124, LNCS 1781, Springer 2000

- Starts from "crude" placement of Φ-functions: in every block, for every variable
- then iteratively eliminates unnecessary Φ-functions
- For reducible CFG
M. Braun, et al.: Simple and Efficient Construction of Static Single Assignment Form. $22^{\text {nd }}$ Conference on Compiler Construction (CC 2013), pages 102-122, LNCS 7791, Springer 2013
- avoids computation of dominance or iterated DF
- works directly on AST (avoids CFG)

Static Single Assignment

Static Single Assignment Advantages:

- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.
- Eliminates unnecessary relationships:

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \text { do } A[i]=0 \\
& \text { for } i=1 \text { to } M \text { do } B[i]=1
\end{aligned}
$$

- No reason why both loops should be forced to use same register to hold index register.
- SSA renames second i to new register which may lead to better register allocation.
- SSA form make certain optimizations quick and easy \rightarrow dominance property.
- Variables have only one definition - no ambiguity.
- Dominator information is encoded in the assignments.

SSA Dominance Property

Dominance property of SSA form: definitions dominate uses

- If x is $i^{\text {th }}$ argument of ϕ-function in node n, then definition of x dominates $i^{\text {th }}$ predecessor of n.
- If x is used in non- ϕ statement in node n, then definition of x dominates n.

SSA Dead Code Elimination

Given d : $\mathrm{t}=\mathrm{x}$ op y

- t is live at end of node d if there exists path from end of d to use of t that does not go through definition of t.
- if program not in SSA form, need to perform liveness analysis to determine if t live at end of d.
- if program is in SSA form:

Given $d: \mathrm{t}=\mathrm{x}$ op y

- t is live at end of node d if there exists path from end of d to use of t that does not go through definition of t.
- if program not in SSA form, need to perform liveness analysis to determine if t live at end of d.
- if program is in SSA form:
- cannot be another definition of t
- if there exists use of t, then path from end of d to use exists, since definitions dominate uses.
* every use has a unique definition
* t is live at end of node d if t is used at least once

SSA Dead Code Elimination

Algorithm:

WHILE (for each temporary t with no uses \&\&
statement defining t has no other side-effects) DO delete statement definition t

SSA Simple Constant Propagation

Given $d: \mathrm{t}=\mathrm{c}, \mathrm{c}$ is constant Given $u: \mathrm{x}=\mathrm{t} \circ \mathrm{p} \mathrm{b}$

- if program not in SSA form:
- need to perform reaching definition analysis
- use of t in u may be replaced by c if d reaches u and no other definition of t reaches u
- if program is in SSA form:

SSA Simple Constant Propagation

Given $d: \mathrm{t}=\mathrm{c}, \mathrm{c}$ is constant Given $u: \mathrm{x}=\mathrm{t} o \mathrm{p} \mathrm{b}$

- if program not in SSA form:
- need to perform reaching definition analysis
- use of t in u may be replaced by c if d reaches u and no other definition of t reaches u
- if program is in SSA form:
- d reaches u, since definitions dominate uses, and no other definition of t exists on path from d to u
$-d$ is only definition of t that reaches u, since it is the only definition of t.
* any use of t can be replaced by c
* any ϕ-function of form $\mathrm{v}=\phi\left(c_{1}, c_{2}, \ldots, c_{n}\right)$, where $c_{i}=c$, can be replaced by $\mathrm{V}=\mathrm{C}$

Similarly: copy propagation, constant folding, constant condition, elimination of unreachable code

SSA Simple Constant Propagation

SSA Conditional Constant Propagation

- r2 always has value of 1
- nodes 9, 10 never executed
- "simple" constant propagation algorithms assumes (through reaching definitions analysis) nodes 9,10 may be executed.
- cannot optimize use of $r 2$ in node 5 since definitions 7 and 9 both reach 5 .

SSA Conditional Constant Propagation

Much smarter than "simple" constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

SSA Conditional Constant Propagation

Much smarter than "simple" constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track run-time value of each register r using lattice of values:

- $V[r]=\perp$ (bottom): compiler has seen no evidence that any assignment to r is ever executed.
- $V[r]=4$: compiler has seen evidence that an assignment $r=4$ is executed, but has seen no evidence that r is ever assigned to another value.
- $V[r]=\mathrm{T}$ (top): compiler has seen evidence that r will have, at various times, two different values, or some value that is not predictable at compile-time.

SSA Conditional Constant Propagation

Much smarter than "simple" constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track run-time value of each register r using lattice of values:

- $V[r]=\perp$ (bottom): compiler has seen no evidence that any assignment to r is ever executed.
- $V[r]=4:$ compiler has seen evidence that an assignment $r=4$ is executed, but has seen no evidence that r is ever assigned to another value.
- $V[r]=\mathrm{T}$ (top): compiler has seen evidence that r will have, at various times, two different values, or some value that is not predictable at compile-time.
Also:
- all registers start at bottom of lattice
- new information can only move registers up in lattice

SSA Conditional Constant Propagation

Track executability of each node in N :

- $E[N]=$ false: compiler has seen no evidence that node N can ever be executed.
- $E[N]=$ true: compiler has seen evidence that node N can be executed.

Initially:

- $V[r]=\perp$, for all registers r
- $E\left[s_{0}\right]=$ true, s_{0} is CFG start node
- $E[N]=$ false, for all CFG nodes $N \neq s_{0}$

SSA Conditional Constant Propagation

Algorithm: apply following conditions until no more changes occur to E or V values:

1. Given: register r with no definition (formal parameter, uninitialized).

Action: $V[r]=\top$
2. Given: executable node B with only one successor C

Action: $E[C]=$ true
3. Given: executable assignment $\mathrm{r}=\mathrm{x}$ op $\mathrm{y}, V[x]=c_{1}$ and $V[y]=c_{2}$

Action: $V[r]=c_{1} \mathrm{op} c_{2} \quad$ In particular, use this rule for $\mathbf{r}=\mathbf{c}$.
4. Given: executable assignment $\mathrm{r}=\mathrm{x}$ op $\mathrm{y}, V[x]=\mathrm{T}$ or $V[y]=\mathrm{T}$ Action: $V[r]=\top$
5. Given: executable assignment $r=\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right), V\left[x_{i}\right]=c_{1}, V\left[x_{j}\right]=c_{2}$, and predecessors i and j are executable
Action: $V[r]=\mathrm{T}$
6. Given: executable assignment $\mathbf{r}=\mathrm{M}[\ldots]$ or $\mathrm{r}=\mathrm{f}(\ldots)$:

Action: V[r] = T

SSA Conditional Constant Propagation

7. Given: executable assignment $\mathbf{r}=\Phi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$ where $\mathrm{V}\left[\mathbf{x}_{\mathrm{i}}\right]=\top$ for some i such that the $i^{\text {th }}$ predecessor is executable:
Action: V[r]=T
8. Given: executable assignment $\mathbf{r}=\boldsymbol{\Phi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}\right)$ where
$--V\left[x_{i}\right]=c_{i}$ for some i where the $i^{i t h}$ predecessor is executable, and
-- for each $j \neq i$, either the $j^{j h}$ predecessor is not executable or $V\left[\mathbf{x}_{j}\right] \in\left\{\perp, c_{i}\right\}$: Action: $\mathrm{V}[\mathrm{r}]=\mathrm{c}_{\mathrm{i}}$
9. Given: executable branch br x bop $\mathrm{y}, \mathrm{L} 1$ (else L 2) where $\mathrm{V}[\mathrm{x}]=\mathrm{T}$ or $\mathrm{V}[\mathrm{y}]=\mathrm{T}$ Action: E[L1] = true and E[L2] = true
10. Given: executable branch br x bop y, $L 1$ (else L2) where $V[x]=c_{1}$ and $V[y]=c_{2}$ Action: $\mathrm{E}[\mathrm{L} 1]=$ true or $\mathrm{E}[\mathrm{L} 2]=$ true depending on C_{1} bop C_{2}

Iterate until no update possible.

SSA Conditional Constant Propagation

Given V, E values, program can be optimized as follows:

- if $E[B]=$ false, delete node B form CFG.
- if $V[r]=c$, replace each use of r by c, delete assignment to r.

SSA Conditional Constant Propagation: example

SSA Conditional Constant Propagation: example

SSA Conditional Constant Propagation: example

Next: eliminate Φ-functions: easy in this case - map all versions of r3 to r3

SSA Conditional Constant Propagation: example

Translating out of SSA: elimination of Φ-functions

Intuitive interpretation of Φ-functions suggests insertion of move instructions at the end of immediate control flow predecessors

Translating out of SSA: elimination of Φ-functions

Intuitive interpretation of Φ-functions suggests insertion of move instructions at the end of immediate control flow predecessors

$$
\begin{gathered}
z \leftarrow \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
u \leftarrow z^{*} 2 \\
\ldots
\end{gathered}
$$

Then rely on register allocator to coalesce / eliminate moves when possible.

Translating out of SSA -- issue I

Translating out of SSA -- issue I

Move instructions pile up in blocks with multiple successors - they're not dead.

Translating out of SSA -- issue I

Solution: place move instructions "in the CFG edge", in a new basic block, whenever predecessor block has several successors.

Translating out of SSA -- issue I

"Edge-split SSA form": each CFG edge is either its source block's only out-edge or its sink block's only in-edge.
Easy to achieve during SSA construction: add empty blocks.

More motivation for edge splitting: "lost copy" problem

More motivation for edge splitting: "lost copy" problem

More motivation for edge splitting: "lost copy" problem

More motivation for edge splitting: "lost copy" problem

Incorrect result: copy propagation + Ф-elimination incompatible.

More motivation for edge splitting: "lost copy" problem

Edge split makes copy propagation + Φ-elimination compatible.

More motivation for edge splitting: "lost copy" problem

Root cause: copy propagation (and other transformations) potentially alter liveness ranges, so that the ranges of different SSA-versions x_{i} of a source-program variable \mathbf{x} are not any longer distinct.

After SSA construction, different "versions" $\mathbf{x}_{\mathbf{i}}$ of a source-program variable \mathbf{x} are "first-class citizens", unrelated to each other or to \mathbf{x}.

Translating out of SSA -- issue II: "swap problem"

Translating out of SSA -- issue II: "swap problem"

+ edge split

Translating out of SSA -- issue II: "swap problem"

SSA constr.

+ edge split

Translating out of SSA -- issue II: "swap problem"

- SSA constr.

Incorrect result: copy folding + Ф-elimination incompatible.
p true: correct result

+ edge split
p false: a and b are identified in first loop iteration, so $b_{2}=a_{2}$ holds upon loop exit, so return value is 0 .

Translating out of SSA -- issue II: "swap problem"

Root cause: the moves should "execute in parallel", ie first read their RHS, then assign to the LHS variables in paralle!!
Φ-functions in a basic block should be considered

a single Φ-block, of concurrent assignment, so that the relative order of Φ-functions is irrelevant:

$$
\left(\begin{array}{l}
\left(z_{i}^{2}\right)
\end{array}\right) \leftarrow \Phi_{(0, n)}^{\left(0,0, a_{2}\right)}
$$

Translating out of SSA -- issue II: "swap problem"

The Φ-functions in a basic block should be considered concurrent - as a single Φ-block:

$$
\binom{a_{2}^{2}}{b_{2}^{2}} \leftarrow \Phi_{\left(b_{0}, a_{2}, a_{2}\right)}^{\left(a_{1}\right)}
$$

And replacement of Φ by moves should respect this interpretation.

Conceptual intermediate step: unary Φ-blocks at the end of the CFG predecessors / in the incoming CFG edges.

Translating out of SSA -- issue II: "swap problem"

Then, concurrent elimination of unary Φ-blocks.

$$
\begin{aligned}
& a_{1} \leftarrow \ldots \\
& b_{1} \leftarrow \ldots \\
& a_{2} \leftarrow a_{1} \\
& b_{2} \leftarrow b_{1}
\end{aligned}
$$

Translating out of SSA -- issue II: "swap problem"

Then, concurrent elimination of unary Φ-blocks.

$$
\begin{aligned}
& a_{1} \leftarrow \ldots \\
& b_{1} \leftarrow \ldots \\
& a_{2} \leftarrow a_{1} \\
& b_{2} \leftarrow b_{1}
\end{aligned}
$$

but here, have cyclic dependency
horizontal : left-to-right

Translating out of SSA -- issue II: "swap problem"

Then, concurrent elimination of unary Φ-blocks.

$$
\begin{gathered}
a_{1} \leftarrow \ldots \\
b_{1} \leftarrow \ldots \\
\binom{a_{2}}{b_{2}} \leftarrow \Phi_{\left(b_{1}\right)}^{\left(a_{1}\right)}
\end{gathered}
$$

but here, have cyclic dependency

Breaking dependence cycle into sequence of move instructions requires an additional variable.

$$
\begin{aligned}
& k \leftarrow a_{2} \\
& a_{2} \leftarrow b_{2} \\
& b_{2} \leftarrow k
\end{aligned}
$$

Translating out of SSA -- issue II: "swap problem"

Resulting code has correct behavior, for $p=$ true and $p=f a l s e$.

Translating out of SSA -- issue II: "swap problem"

In general, the variables in a (unary) Φ-block can form multiple (non-overlapping) cycles, of different length.

(d)
(f)
(a)
(c)

New (implicit) sanity condition of SSA:
LHS variables should be distinct!

Variables may occur repeatedly in RHS - but only participate in one cycle.

The cycles can be broken in succession, so the single additional variable/register \mathbf{k} can be reused!

The moves not involved in a cycle (like $e \leftarrow a$) are emitted first.

Translating out of SSA -- discussion

Some care is needed to avoid lost copies and the swap problem, but basic principle - manifest the intuitive meaning of Φ-functions by locally inserting copy instructions "in the incoming edges" - works fine.

Alternative: globally identify groups of variables that can be unified

- first guess - the original variables: works fine, until aggressive optimizations yield overlapping liveness ranges etc.
- ϕ-congruence classes (Sreedhar et al., Translating out of static single assignment form. $6^{\text {th }}$ Static Analysis Symposium, LNCS 1694, Springer, 1999)

Insertion of moves, effect on liveness ranges, etc suggest exploration of interaction between SSA and register allocation

SSA and register allocation

S. Hack et al., Register allocation for programs in SSA form. $15^{\text {th }}$ Conference on Compiler Construction (CC'06), LNCS 3923, Springer, 2006

Interference graphs of SSA programs are chordal graphs.
Any cycle of >3 vertices has a chord, i.e. an edge that is not part of the cycle but connects two of its vertices.

Key properties of chordal graphs:

1. their chromatic number is equal to the size of the largest clique
2. they can be optimally colored in quadratic time (w.r.t. number of nodes)

SSA and register allocation

S. Hack et al., Register allocation for programs in SSA form. $15^{\text {th }}$ Conference on Compiler Construction (CC'06), LNCS 3923, Springer, 2006

Also: the largest clique in the interference graph of an SSA program P is locally manifest in P : there is at least one instruction i_{p} where all members of the clique are live.

Can hence traverse program and obtain required number of colors - and know which variables to spill/coalesce in case we don't have this many registers.

Resulting approach to register allocation:

No need for iteration!
Don't merge nodes in G, but share reg for variables in a Ф-node.
In ordinary programs, iteration was needed since spilling/coalescing was not guaranteed to reduce the number of colors needed. For SSA, this is guaranteed, if we spill/coalesce variables live at i_{p}.

SSA and register allocation: Hack et al.'s result

Remember: interference graph of an SSA program P

- interference graph: $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where nodes V : program variables
edges $\mathrm{E}:(\mathrm{v}, \mathrm{w}) \in \mathrm{E}$ if there is a program point at which v and w are both live
- SSA: each use of a variable v is dominated by the (unique) definition D_{v} of v

Lemma 1: if v and w interfere, either D_{v} dominates D_{w} or D_{w} dominates D_{v}.

Idea: Let i be the instruction at which v and w both live.
Thus, there are paths $i \cdots \cdots U_{v}$ and $i \ldots \ldots . . \rightarrow U_{w}$
to some uses of v and w. As U_{v} is dominated by D_{v}, there is a path $D_{v} \cdots \cdots \rightarrow i$. Similarly, there is a path from D_{w} to i. Hence, entry $\cdots \cdots \cdots D_{v} \cdots \cdots \cdots \rightarrow i \cdots U_{w}$ must contain $D_{w,}$ and entry $\cdots \cdots \cdots D_{w} \cdots \cdots \cdots i \cdots \cdots \cdots U_{v}$
 must contain $D_{v,}$. From this obtain claim...

SSA and register allocation: Hack et al.'s result

Lemma 1: if v and w interfere, either D_{v} dominates D_{w}, or D_{w} dominates D_{v}.
Lemma 2: if v and w interfere and D_{v} dominates D_{w}, then v is live at D_{v}.

SSA and register allocation: Hack et al.'s result

Lemma 1: if v and w interfere, either D_{v} dominates D_{w} or D_{w} dominates D_{v}.
Lemma 2: if v and w interfere and D_{v} dominates D_{w}, then v is live at D_{v}.

Theorem 1: Let $\mathrm{C}=\left\{\mathrm{c}_{1}, \ldots \mathrm{c}_{n}\right\}$ be a clique in G , ie $\left(\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right) \in \mathrm{E}$ forall $\mathrm{i} \neq \mathrm{j}$. Then, there is a label in P where c_{1}, \ldots, c_{n} are all live.

Proof :

- by Lemma 1 , the nodes $\mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{n}}$ are totally ordered by the dominance relationship: $\mathrm{c}_{\sigma(1)}, \ldots, \mathrm{c}_{\sigma(n)}$ for some permutation σ of $\{1, . . \mathrm{n}\}$
- as dominance is transitive, all $\mathrm{c}_{\sigma(i)}$ dominate $\mathrm{c}_{\sigma(\mathrm{n})}$
- by Lemma 2, all $\mathrm{c}_{\sigma(i)}$ are hence all live at $\mathrm{c}_{\sigma(\mathrm{n})}$.

SSA and register allocation: Hack et al.'s result

- we color nodes by stack-based simplify-select (cf Kempe).
- suppose we can simplify nodes in a perfect elimination order: when a node is removed, its remaining neighbors form a clique
- then, when we reinsert the node, we again have a clique
- the size of the latter clique is bound by $\omega(\mathrm{G})$, the size of G^{\prime} largest clique

SSA and register allocation: Hack et al.'s result

- we color nodes by stack-based simplify-select (cf Kempe).
- suppose we can simplify nodes in a perfect elimination order: when a node is removed, its remaining neighbors form a clique
- then, when we reinsert the node, we again have a clique
- the size of the latter clique is bound by $\omega(\mathrm{G})$, the size of G^{\prime} largest clique

Theorem 2: G admits simplification by a PEO.
(admitting simplification by PEO is equivalent to being chordal)

SSA and register allocation: Hack et al.'s result

- we color nodes by stack-based simplify-select (cf Kempe).
- suppose we can simplify nodes in a perfect elimination order: when a node is removed, its remaining neighbors form a clique
- then, when we reinsert the node, we again have a clique
- the size of the latter clique is bound by $\omega(\mathrm{G})$, the size of G^{\prime} largest clique

Theorem 2: G admits simplification by a PEO.

(admitting simplification by PEO is equivalent to being chordal)

Theorem 3: Chordal graphs are
 max colors needed = size of the largest clique

Thus, we can color G (using a PEO) using $\omega(G)$ many colors, and P contains an instruction where $\omega(G)$ variables are live (and no instruction with more).
Thus: can traverse P, search for largest local live-set, and obtain \#registers.

SSA and functional programming

SSA: - each variable has a unique site of definition; different uses of the same source-program variable name are disambiguated

- the def-site dominates all uses
- in straight-line code, each variable is assigned to only once

SSA and functional programming

SSA: - each variable has a unique site of definition; different uses of the same source-program variable name are disambiguated

- the def-site dominates all uses
- in straight-line code, each variable is assigned to only once

Functional code:

- each name has a unique site of binding: let $\mathrm{x}=\mathrm{e}_{1}$ in e_{2}; different uses of the same name are kept apart by the language definition, or can be explicitly disambiguated by a-renaming
- the binding-site determines a scope that contains all uses
- in straight-line code, the value to which a name is bound is never changes

SSA and functional programming

SSA: - each variable has a unique site of definition; different uses of the same source-program variable name are disambiguated

- the def-site dominates all uses
- in straight-line code, each variable is assigned to only once

Functional code:

- each name has a unique site of binding: let $\mathrm{x}=\mathrm{e}_{1}$ in e_{2}; different uses of the same name are kept apart by the language definition, or can be explicitly disambiguated by a-renaming
- the binding-site determines a scope that contains all uses
- in straight-line code, the value to which a name is bound never changes - and in a recursive function, we're in different stack frames (but see details on stack frames in later lecture).

SSA and functional programming - correspondences

Functional concept	Imperative/SSA concept
variable binding in let	assignment (point of definition)
α-renaming	variable renaming
unique association of binding occurrences to uses	unique association of defs to uses
formal parameter of continuation/local function	
lexical scope of bound variable	ϕ-function (point of definition)
dominance region	

Functional concept	Imperative/SSA concept
subterm relationship	control flow successor relationship
arity of function f_{i}	number of ϕ-functions at beginning of b_{i}
distinctness of formal parameters of f_{i}	distinctness of LHS-variables in the ϕ-block of b_{i}
number of call sites of function f_{i}	arity of ϕ-functions in block b_{i}
parameter lifting/dropping	addition/removal of ϕ-function
block floating/sinking	
potential nesting structure	reordering according to dominator tree structure
nesting level	dominator tree
maximal level index in dominator tree	

- construction of SSA can be recast as transformation of a corresponding functional program; destruction, too
- latent structural properties of SSA often explicit in FP view
- correctness arguments for SSA analyses \& transformations transfer to/from functional view

SSA construction in functional style

Step 1

convert into

functional form

- one function per basic block
- all functions mutually (tail-)recursive
- entry point: top-level initial function call
- function bodies: let-bindings for basic instructions (ANF)
- liveness analysis yields formal parameter and argument lists

SSA construction in functional style

Step 1

convert into

functional form

$$
\begin{aligned}
& \text { let fun } f_{1}()=\text { let val } v=1 \\
& \text { val } z=8 \\
& \text { val } y=4 \\
& \text { in } f_{2}(v, z, y) \text { end } \\
& \text { and } f_{2}(v, z, y)=\text { let val } x=5+y \\
& \text { val } y=x * z \\
& \text { val } x=x-1 \\
& \text { in if } x=0 \text { then } f_{3}(y, v) \\
& \text { else } f_{2}(v, z, y) \text { end } \\
& \text { and } f_{3}(y, v)=\text { let val } w=y+v \\
& \text { in } w \text { end }
\end{aligned}
$$

- one function per basic block
- all functions mutually (tail-)recursive
- entry point: top-level initial function call
- function bodies: let-bindings for basic instructions (ANF)
- liveness analysis yields formal parameter and argument lists

SSA construction in functional style

- all functions closed
- variables not globally unique, but uses have unique defs (scope)

Step 1
convert into functional form

$$
\begin{aligned}
& \text { let fun } f_{1}()=\text { let val } v=1 \\
& \text { val } z=8 \\
& \text { val } y=4 \\
& \text { in } f_{2}(v, z, y) \text { end } \\
& \text { and } f_{2}(v, z, y)=\text { let val } x=5+y \\
& \text { val } y=x * z \\
& \text { val } x=x-1 \\
& \text { in if } x=0 \text { then } f_{3}(y, v) \\
& \text { else } f_{2}(v, z, y) \text { end } \\
& \text { and } f_{3}(y, v)=\text { let val } w=y+v \\
& \text { in } w \text { end }
\end{aligned}
$$

- one function per basic block
- all functions mutually (tail-)recursive
- entry point: top-level initial function call
- function bodies: let-bindings for basic instructions (ANF)
- liveness analysis yields formal parameter and argument lists

SSA construction in functional style

```
let fun \(f_{1}()=\) let val \(v=1\)
            val \(z=8\)
    val \(y=4\)
    in \(f_{2}(v, z, y)\) end
and \(f_{2}(v, z, y)=\) let val \(x=5+y\)
        val \(y=x^{*} z\)
        val \(x=x-1\)
            in if \(x=0\) then \(f_{3}(y, v)\)
        else \(f_{2}(v, z, y)\) end
and \(f_{3}(y, v)=\) let val \(w=y+v\)
    in w end
in \(f_{1}()\) end;
```

- as functions are closed, can rename each function definition individually

SSA construction in functional style

let fun $\mathrm{f}_{1}()=$ let val $\mathrm{v}=1$	let fun $\mathrm{f}_{1}()=$ let val $\mathrm{v}_{1}=1$	
val $z=8$		val $z_{1}=8$
val $\mathrm{y}=4$		val $\mathrm{y}_{1}=4$
in $f_{2}(v, z, y)$ end		in $f_{2}\left(v_{1}, z_{1}, y_{1}\right)$ end
$\text { and } \begin{aligned} f_{2}(v, z, y)=\text { let val } x & =5+y \\ \text { val } y & =x^{*} z \end{aligned}$	optional and	$\begin{array}{r} \text { and } f_{2}\left(v_{2}, z_{2}, y_{2}\right)= \\ \\ \\ \text { val } y_{3}=x_{1}{ }^{*} z_{2} \end{array}$
$\begin{gathered} \text { val } x=x-1 \\ \text { in if } x=0 \text { then } f_{3}(y, v) \\ \text { else } f_{2}(v, z, y) \text { end } \end{gathered}$	make names unique	$\begin{aligned} & \text { val } x_{2}=x_{1}-1 \\ & \text { in if } x_{2}=0 \text { then } f_{3}\left(y_{3}, v_{2}\right) \\ & \text { else } f_{2}\left(v_{2}, z_{2}, y_{3}\right) \text { end } \end{aligned}$
and $f_{3}(y, v)=$ let val $w=y+v$ in w end		$\begin{aligned} & \text { and } f_{3}\left(y_{4}, v_{3}\right)=\text { let val } w_{1}=y_{4}+v_{3} \\ & \text { in } w_{1} \text { end } \end{aligned}$
in $f_{1}()$ end;		in $f_{1}()$ end;

- as functions are closed, can rename each function definition individually

SSA construction in functional style

interpret back in
imperative form

$$
\begin{aligned}
& \text { let fun } f_{1}()=\text { let val } v_{1}=1 \\
& \text { val } z_{1}=8 \\
& \text { val } y_{1}=4 \\
& \text { in } f_{2}\left(v_{1}, z_{1}, y_{1}\right) \text { end } \\
& \text { and } f_{2}\left(v_{2}, z_{2}, y_{2}\right)=\text { let val } x_{1}=5+y_{2} \\
& \text { val } y_{3}=x_{1}{ }^{*} z_{2} \\
& \text { val } x_{2}=x_{1}-1 \\
& \text { in if } x_{2}=0 \text { then } f_{3}\left(y_{3}, v_{2}\right) \\
& \text { else } f_{2}\left(v_{2}, z_{2}, y_{3}\right) \text { end } \\
& \text { and } f_{3}\left(y_{4}, v_{3}\right)=\text { let val } w_{1}=y_{4}+v_{3} \\
& \text { in } w_{1} \text { end } \\
& \text { in } f_{1}() \text { end; }
\end{aligned}
$$

- each formal parameter of a function definition is the LHS of a Φ-function. Arguments are the function arguments at calls
- arity of functions, distinctness of LHS variables etc all ok
- resulting code "pruned SSA"
- which functional prog avoids the unnecessary Φ-functions?

Removing unnecessary arguments: λ-dropping

- transformation of functional programs to eliminate formal parameters
- can be performed before or after names are made unique - former option more instructive
- (inverse operation: λ-lifting)
- 2 phases: block sinking and parameter dropping

modify nesting structure of function definitions

Removing unnecessary arguments: block sinking

Observation: if

- all calls to g are in body of f (or g$)$, and
- g is closed (all free variables of body are parameters) then the definition of g can be moved inside the definition of f

```
let fun ...
and f(\ldots) = let ... in g(...) end
and g(...) = let ...in
    if ... then g(...) else h (...) end
and h(...) = ...(*no call to g*)
in ... end;
```

Note: g is allowed to

- make recursive calls
- make calls to "host function"
- make calls to other functions, like h

Block sinking: example

(in fact, insert f_{3} "in the edge" ie only in the then-branch - cf edge split form)

Block sinking: example

Block sinking makes dominance structure explicit: $f_{2}=\operatorname{idom}\left(f_{3}\right)$, and $f_{1}=\operatorname{idom}\left(f_{2}\right)$

Parameter dropping I

Parameter dropping II

```
let fun \(f_{1}()=\) let val \(v=1\)
    val \(z=8\)
    val \(y=4\)
    in let fun \(f_{2}(v, z, y)=\)
    let val \(x=5+y\)
        val \(y=x\) * \(z\)
        val \(x=x-1\)
    in if \(x=0\)
    then let fun \(f_{3}()=\ldots\)
        in \(f_{3}()\) end
    else \(f_{2}(v, z, y)\) end
    in \(f_{2}(v, z, y)\) end
in \(f_{1}()\) end;
```


Parameter dropping III

```
let fun \(\mathrm{f}_{1}()=\) let val \(\mathrm{v}=1\)
            val \(z=8\)
    val \(y=4\)
in let fun \(f_{2}(v, z, y)=\)
        let val \(x=5+y\)
        val \(y=x\) * \(z\)
        val \(x=x-1\)
    in if \(x=0\)
    then let fun \(f_{3}()=\ldots\)
        in \(f_{3}()\) end
    else \(f_{2}(v, z, y)\) end
in \(f_{2}(v, z, y)\) end
in \(f_{1}()\) end;
```

Similarly, the external call to f_{2} from within the body of f_{1} would allow to remove all three parameters from f_{2}.

Recursive call of f_{2} :

- admits the removal of parameters v and \mathbf{z}, since the defs associated with the uses at the call site are the defs in the formal parameter list
- does not admit the removal of parameters y, since the def associated with the use of y at the call site is not the def in the formal parameter list

Parameter dropping IV

let fun $f_{1}()=$ let val $v=1$
val $z=8$
val $y=4$
in let fun $f_{2}(y)=$
let val $x=5+y$
val $y=x$ * z
$\operatorname{val} x=x-1$
in if $x=0$
make names distinct
then let fun $f_{3}()=$
let val $w=y+v$
in w end

$$
\begin{aligned}
& \quad \text { in } f_{3}() \text { end } \\
& \text { else } f_{2}(y) \text { end } \\
& \text { in } f_{2}(y) \text { end }
\end{aligned}
$$

in $f_{1}()$ end;

Superfluous Φ-functions avoided.

SSA and functional programming - summary

SSA discipline shares many properties with tailrecursive, first-order fragment of functional languages

- transfer of analysis/optimization algorithms
- suitable intermediate format for compiling functional and imperative languages
- function calls not in tail position: calls to imperative functions/methods/procedures
- alternative functional representation of control flow: continuations

