# **Topic 15: Static Single Assignment**

### COS 320

## **Compiling Techniques**

Princeton University Spring 2016

Lennart Beringer

### **Def-Use Chains**, Use-Def Chains

Many optimizations need to find all use-sites of a definition, and/or all def-sites of a use:

- constant propagation needs the site of the unique reaching def
- copy propagation, common subexpression elimination,...

Data structures supporting these lookups:

- def-use chain: for each definition d of variable
  r, store the use sites of r that d reaches
- use-def chain: for each use site u of variable
  r, store the def-sites of r that reach u

N definitions, M uses: 2\*N\*M relationships

#### **Use-Def Chains, Def-Use Chains**



Add the def-use relationships...

#### **Use-Def Chains, Def-Use Chains**



And these are just the def-use relationships...

### Static Single Assignment

Static Single Assignment (SSA):

- improvement on def-use chains
- each register has only one definition in program
- $\bullet$  for each use u of r, only one definition of r reaches u



How can this be achieved?

### Static Single Assignment

Static Single Assignment (SSA):

- improvement on def-use chains
- each register has only one definition in program
- for each use u of r, only one definition of r reaches u



Rename variables consistently between defs and uses.

#### Static Single Assignment Advantages:

- Dataflow analysis and code optimization made simpler.
  - Variables have only one definition no ambiguity.
  - Dominator information is encoded in the assignments.
- Less space required to represent def-use chains. For each variable, space is proportional to uses \* defs. Distinguishing different defs makes use lists shorter and more precise:

less overlap.

• Eliminates unnecessary relationships:

for i = 1 to N do A[i] = 0 for i = 1 to M do B[i] = 1

- No reason why both loops should be forced to use same register to hold index register.
- SSA renames second i to new register which may lead to better register allocation/optimization.

(Dynamic Single Assignment is also proposed in the literature.)

#### Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

r1 = r3 + r4 r2 = r1 - 1 r1 = r4 + r2 r2 = r5 \* 4r1 = r1 + r2

#### Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

| r1 | = | r3 | + | r4 | r1 = r3 + r4    |
|----|---|----|---|----|-----------------|
| r2 | = | r1 | - | 1  | r2 = r1 – 1     |
| r1 | = | r4 | + | r2 | r1' = r4 + r2   |
| r2 | = | r5 | * | 4  | r2' = r5 * 4    |
| r1 | = | r1 | + | r2 | r1" = r1' + r2' |

Control flow introduces problems.





Use  $\phi$  functions.



## **Conversion to SSA Form**

- $\phi$ -functions enable the use of r3 to be reached by exactly one definition of r3.
- Can implement  $\phi$ -functions as set of move operations on each incoming edge.
- for analysis & optimization: no implementation necessary:
  Φ just used as notation
- left side of Φ-function constitutes a definition; variables in RHS are uses
- ordering of argument positions corresponds to (arbitrary) order of incoming control flow arcs, but left implicit (could name positions using the labels of predecessor basic blocks...)

- elimination of Φ-functions/translation out-of-SSA: insert move instructions; often coalesced during register allocation
- typically, basic blocks have several Φ-functions all near the top, with identical ordering of incomings arcs from control flow predecessors

### **Conversion to SSA Form**

#### Naïve insertion:

add a  $\Phi$ -function for each register at each node with  $\geq 2$  predecessors



Can we do better?

### **Conversion to SSA Form**

**Path-Convergence Criterion**: Insert a  $\phi$ -function for a register r at node z of the flow graph if ALL of the following are true:

- 1. There is a block x containing a definition of r.
- 2. There is a block  $y \neq x$  containing a definition of r.
- 3. There is a non-empty path  $P_{xz}$  of edges from x to z.
- 4. There is a non-empty path  $P_{yz}$  of edges from y to z.
- 5. Paths  $P_{xz}$  and  $P_{yz}$  do not have any node in common other than z.
- 6. The node z does not appear within both  $P_{xz}$  and  $P_{yz}$  prior to the end, though it may appear in one or the other. (eg if y=z)

Assume CFG entry node contains implicit definition of each register:

- r =actual parameter value
- r = undefined

 $\phi$ -functions are counted as definitions.



Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) && (z does not contain a *phi*-function for r) DO: insert  $r = \phi(r, r, ..., r)$  (one per predecessor) at node z.

- Costly to compute. (3 nested loops, for x, y, z)
- Since definitions dominate uses, use domination to simplify computation.

Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) && (z does not contain a *phi*-function for r) DO: insert  $r = \phi(r, r, ..., r)$  (one per predecessor) at node z.

- Costly to compute. (3 nested loops, for x, y, z)
- Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Remember <u>dominance</u>: node x dominates node w if every path from **entry** to w goes through x. (In particular, every node dominates itself)

### **Dominance Frontier**

#### **Definitions:**

- x strictly dominates w if x dominates w and  $x \neq w$ .
- *dominance frontier* of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.



### **Dominance Frontier**

#### **Definitions:**

- x strictly dominates w if x dominates w and  $x \neq w$ .
- *dominance frontier* of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.



 $DF(5) = \{4, 5, 10, 11\}$ 

### **Dominance Frontier Criterion:**

Whenever node x contains a **definition** of a register **r**, insert a  $\Phi$ -function for **r** in all nodes **z**  $\in \mathbf{DF}(\mathbf{x})$ .

### Iterated Dominance Frontier Criterion:

Apply dominance frontier condition repeatedly, to account for the fact that  $\Phi$ -functions constitute definitions themselves.

#### Suppose 5 contains a definition of r.



### **Dominance Frontier Criterion:**

Whenever node x contains a **definition** of a register **r**, insert a  $\Phi$ -function for **r** in all nodes **z**  $\in \mathbf{DF}(\mathbf{x})$ .

### Iterated Dominance Frontier Criterion:

Apply dominance frontier condition repeatedly, to account for the fact that  $\Phi$ -functions constitute definitions themselves.

Suppose **5** contains a definition of **r**. Insert Φ-functions for **r** in red blocks.



### **Dominance Frontier Computation**

- Use dominator tree
- DF[n]: dominance frontier of n
- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator

See errata list of MCIML

Alternative formulation:  $DF_{local}[n] = successors s of n with idom[s] <> n.$ 

### **Dominance Frontier Computation**

- Use dominator tree
- DF[n]: dominance frontier of n
- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator See errata list of MCIML

$$DF[n] = DF_{local}[n] \cup \left( \bigcup_{c \in children[n]} DF_{up}[c] \right)$$

- where children[n] are the nodes whose idom is n.
- Work bottom up in dominator tree.
  Leaf p satisfies DP[ p ] = DF<sub>local</sub>[ p ] since children[p] = {}.

Alternative formulation:  $DF_{local}[n] = successors s of n with idom[s] <> n.$ 

### Dominator Analysis (slide 22 from "Control Flow")

- If d dominates each of the  $p_i$ , then d dominates n.
- If d dominates n, then d dominates each of the  $p_i$ .
- Dom[n] = set of nodes that dominate node n.
- N = set of all nodes.
- Computation: starting point: n dominated by all nodes
  - 1.  $Dom[s_0] = \{s_0\}.$
  - 2. for  $n \in N \{s_0\}$  do Dom[n] = N
  - 3. while (changes to any Dom[n] occur) do

4. for 
$$n \in N - \{s_0\}$$
 do

5.  $Dom[n] = \{n\} \cup (\bigcap_{p \in pred[n]} Dom[p]).$ 

nodes that dominate all predecessors of n











**Dominator Tree** 

| se | set of nodes that<br>dominate n |                      |  |         |  |  |  |  |  |
|----|---------------------------------|----------------------|--|---------|--|--|--|--|--|
|    | Node                            | DOM[n]               |  | IDOM[n] |  |  |  |  |  |
|    | 1                               | 1                    |  |         |  |  |  |  |  |
|    | 2                               | 1, 2                 |  | 1       |  |  |  |  |  |
|    | 3                               | 1, 2, 3              |  | 2       |  |  |  |  |  |
|    | 4                               | 1, 2, 3, 4           |  | 3       |  |  |  |  |  |
|    | 5                               | 1, 2, 3, 4, 5        |  | 4       |  |  |  |  |  |
|    | 6                               | 1, 2, 3, 4, 6        |  | 4       |  |  |  |  |  |
|    | 7                               | 1, 2, 3, 4, 5, 7     |  | 5       |  |  |  |  |  |
|    | 8                               | 1, 2, 3, 4, 5, 7, 8  |  | 7       |  |  |  |  |  |
| I  | 9                               | 1, 2, 3, 4, 5, 9     |  | 5       |  |  |  |  |  |
|    | 10                              | 1, 2, 3, 4, 5, 9, 10 |  | 9       |  |  |  |  |  |
|    | 11                              | 1, 2, 3, 4, 5, 11    |  | 5       |  |  |  |  |  |
|    |                                 |                      |  |         |  |  |  |  |  |

• Every node  $n \ (n \neq s_0)$  has exactly one immediate dominator IDom[n].

•  $IDom[n] \neq n$ 

Hence: last dominator of n on any path from s0 to n is IDom[n]

- IDom[n] dominates n
- IDom[n] does not dominate any other dominator of n.









- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator

$$DF[n] = DF_{local}[n] \cup \left( \bigcup_{c \in children[n]} DF_{up}[c] \right)$$

• where children[n] are the nodes whose idom is n.



- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator

$$DF[n] = DF_{local}[n] \cup \left(\bigcup_{c \in children[n]} DF_{up}[c]\right)$$

• where children[n] are the nodes whose idom is n.



- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator

$$DF[n] = DF_{local}[n] \cup \left(\bigcup_{c \in children[n]} DF_{up}[c]\right)$$

 $\bullet$  where children[n] are the nodes whose idom is n.





| n  | U <sub>c(n)</sub><br>DF <sub>up</sub> [c] | DF[n] | DF <sub>up</sub> [n] |
|----|-------------------------------------------|-------|----------------------|
| 1  |                                           |       |                      |
| 2  |                                           |       |                      |
| 3  |                                           |       |                      |
| 4  |                                           |       |                      |
| 5  |                                           |       |                      |
| 6  | {}                                        |       |                      |
| 7  | *                                         |       |                      |
| 8  | {}                                        | 11 —  | → 11                 |
| 9  | *                                         |       |                      |
| 10 | {}                                        | 11 —  | ➡ 11                 |
| 11 | {}                                        | 4 —   | → 4                  |

- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator



- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator


- $DF_{local}[n]$ : successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$ : nodes in dominance frontier of c that are not strictly dominated by c's immediate dominator

$$DF[n] = DF_{local}[n] \cup \left(\bigcup_{c \in children[n]} DF_{up}[c]\right)$$

 $\bullet$  where children[n] are the nodes whose idom is n.



| 1<br>I            |      |         |  |                         |
|-------------------|------|---------|--|-------------------------|
| 2<br> <br>3 -<br> | Node | IDOM[n] |  | DF <sub>local</sub> [n] |
|                   | 1    |         |  |                         |
| 4                 | 2    | 1       |  |                         |
| 5 6               | 3    | 2       |  |                         |
|                   | 4    | 3       |  |                         |
| 11 7 9            | 5    | 4       |  |                         |
|                   | 6    | 4       |  |                         |
| 8 10              | 7    | 5       |  |                         |
| Dominator Tree    | 8    | 7       |  | 11                      |
|                   | 9    | 5       |  |                         |
|                   | 10   | 9       |  | 11                      |
|                   | 11   | 5       |  | 4                       |

| n  | U <sub>c(n)</sub><br>DF <sub>up</sub> [c] | DF[n] | DF <sub>up</sub> [n] |
|----|-------------------------------------------|-------|----------------------|
| 1  |                                           |       |                      |
| 2  | :                                         |       | :                    |
| 3  | :                                         |       | :                    |
| 4  |                                           |       |                      |
| 5  |                                           | 4     |                      |
| 6  | {}                                        |       |                      |
| 7  | 11                                        | 11    |                      |
| 8  | {}                                        | 11    | 11                   |
| 9  | 11                                        | 11    |                      |
| 10 | {}                                        | 11    | 11                   |
| 11 | {}                                        | 4     | 4                    |





#### **Rename Variables:**

- 1. traverse dominator tree, renaming different definitions of r to  $r_1, r_2, r_3...$
- 2. rename each regular use of r to most recent definition of r
- 3. rename  $\phi$ -function arguments with each incoming edge's unique definition

#### **Rename Variables:**





**Dominator Tree** 

#### Alternative construction methods for SSA

Lengauer-Tarjan: efficient computation of dominance tree

- near linear time
- uses depth-first spanning tree
  - see MCIML, Section 19.2

John Aycock, Nigel Horspool: Simple Generation of Static Single Assignment Form.9<sup>nd</sup> Conference on Compiler Construction (CC 2000), pages 110—124, LNCS 1781, Springer 2000

- Starts from "crude" placement of  $\Phi$ -functions: in every block, for every variable
  - then iteratively eliminates unnecessary Φ-functions
    - For reducible CFG

M. Braun, et al.: Simple and Efficient Construction of Static Single Assignment Form.22<sup>nd</sup> Conference on Compiler Construction (CC 2013), pages 102—122, LNCS 7791, Springer 2013

- avoids computation of dominance or iterated DF
  - works directly on AST (avoids CFG)

#### Static Single Assignment Advantages:

- Less space required to represent def-use chains. For each variable, space is proportional to uses \* defs.
- Eliminates unnecessary relationships:

for i = 1 to N do A[i] = 0 for i = 1 to M do B[i] = 1

- No reason why both loops should be forced to use same register to hold index register.
- SSA renames second i to new register which may lead to better register allocation.
- SSA form make certain optimizations quick and easy  $\rightarrow$  dominance property.
  - Variables have only one definition no ambiguity.
  - Dominator information is encoded in the assignments.

# **SSA Dominance Property**

Dominance property of SSA form: definitions dominate uses

- If x is  $i^{\text{th}}$  argument of  $\phi$ -function in node n, then definition of x dominates  $i^{\text{th}}$  predecessor of n.
- If x is used in non- $\phi$  statement in node n, then definition of x dominates n.

Given d: t = x op y

- t is live at end of node d if there exists path from end of d to use of t that does not go through definition of t.
- if program not in SSA form, need to perform liveness analysis to determine if t live at end of d.
- if program is in SSA form:

Given d: t = x op y

- t is live at end of node d if there exists path from end of d to use of t that does not go through definition of t.
- if program not in SSA form, need to perform liveness analysis to determine if t live at end of d.
- if program is in SSA form:
  - cannot be another definition of t
  - if there exists use of t, then path from end of d to use exists, since definitions dominate uses.
    - \* every use has a unique definition
    - \* t is live at end of node d if t is used at least once

## **SSA Dead Code Elimination**

Algorithm:

WHILE (for each temporary t with no uses && statement defining t has no other side-effects) DO delete statement definition t



Given d: t = c, c is constant Given u: x = t op b

- if program not in SSA form:
  - need to perform reaching definition analysis
  - use of t in u may be replaced by c if d reaches u and no other definition of t reaches u
- if program is in SSA form:

Given d: t = c, c is constant Given u: x = t op b

- if program not in SSA form:
  - need to perform reaching definition analysis
  - use of t in u may be replaced by c if d reaches u and no other definition of t reaches u
- if program is in SSA form:
  - d reaches u, since definitions dominate uses, and no other definition of t exists on path from d to u
  - -d is only definition of t that reaches u, since it is the only definition of t.
    - $\ast$  any use of t can be replaced by c
    - \* any  $\phi$  -function of form v =  $\phi(c_1,c_2,...,c_n),$  where  $c_i=c,$  can be replaced by v = c

eliminate branches whose outcome is constant

Similarly: copy propagation, constant folding, constant condition, elimination of unreachable code







- r2 always has value of 1
- nodes 9, 10 never executed
- "simple" constant propagation algorithms assumes (through reaching definitions analysis) nodes 9, 10 may be executed.
- cannot optimize use of r2 in node 5 since definitions 7 and 9 both reach 5.

Much smarter than "simple" constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Much smarter than "simple" constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track run-time value of each register r using *lattice* of values:

- $V[r] = \bot$  (bottom): compiler has seen no evidence that any assignment to r is ever executed.
- V[r] = 4: compiler has seen evidence that an assignment r = 4 is executed, but has seen no evidence that r is ever assigned to another value.
- $V[r] = \top$  (top): compiler has seen evidence that r will have, at various times, two different values, or some value that is not predictable at compile-time.



Much smarter than "simple" constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track run-time value of each register r using *lattice* of values:

- $V[r] = \bot$  (bottom): compiler has seen no evidence that any assignment to r is ever executed.
- V[r] = 4: compiler has seen evidence that an assignment r = 4 is executed, but has seen no evidence that r is ever assigned to another value.
- $V[r] = \top$  (top): compiler has seen evidence that r will have, at various times, two different values, or some value that is not predictable at compile-time.

Also:

- all registers start at bottom of lattice
- new information can only move registers up in lattice



Track executability of each node in N:

- E[N] = false: compiler has seen no evidence that node N can ever be executed.
- E[N] = true: compiler has seen evidence that node N can be executed.

Initially:

- $V[r] = \bot$ , for all registers r
- $E[s_0] =$ true,  $s_0$  is CFG start node
- E[N] =false, for all CFG nodes  $N \neq s_0$

Algorithm: apply following conditions until no more changes occur to E or V values:

- 1. Given: register r with no definition (formal parameter, uninitialized). Action:  $V[r] = \top$
- 2. Given: executable node B with only one successor CAction: E[C] =true
- 3. Given: executable assignment  $r = x \text{ op } y, V[x] = c_1 \text{ and } V[y] = c_2$ Action:  $V[r] = c_1 \text{ op } c_2$  In particular, use this rule for r = c.
- 4. Given: executable assignment r = x op y,  $V[x] = \top$  or  $V[y] = \top$ Action:  $V[r] = \top$
- 5. Given: executable assignment  $r = \phi(x_1, x_2, ..., x_n)$ ,  $V[x_i] = c_1$ ,  $V[x_j] = c_2$ , and predecessors *i* and *j* are executable Action:  $V[r] = \top$
- Given: executable assignment r = M [...] or r = f (...):
   Action: V[r] = ⊤

- 7. Given: executable assignment r = Φ (x<sub>1</sub>, ..., x<sub>n</sub>) where V [x<sub>i</sub>] = T for some i such that the i<sup>th</sup> predecessor is executable:
   Action: V[r] = T
- 8. Given: executable assignment r = Φ (x<sub>1</sub>, ..., x<sub>n</sub>) where

  -- V [x<sub>i</sub>] = c<sub>i</sub> for some i where the i<sup>th</sup> predecessor is executable, and
  -- for each j≠i, either the j<sup>th</sup> predecessor is not executable or V[x<sub>j</sub>] ∈ {⊥, c<sub>i</sub>}:

  Action: V[r] = c<sub>i</sub>
- 9. Given: executable branch br x bop y, L1 (else L2) where V [x] = T or V [y] = T Action: E[L1] = true and E[L2] = true
- 10. Given: executable branch **br x bop y, L1 (else L2)** where  $V[x] = c_1$  and  $V[y] = c_2$ Action: E[**L1**] = true or E[**L2**] = true depending on  $c_1$  **bop**  $c_2$

Iterate until no update possible.

Given V, E values, program can be optimized as follows:

- if E[B] = false, delete node B form CFG.
- if V[r] = c, replace each use of r by c, delete assignment to r.







Next: eliminate  $\Phi$ -functions: easy in this case - map all versions of r3 to r3



### Translating out of SSA: elimination of Φ-functions

Intuitive interpretation of  $\Phi$ -functions suggests insertion of move instructions at the end of immediate control flow predecessors



## Translating out of SSA: elimination of Φ-functions

Intuitive interpretation of  $\Phi$ -functions suggests insertion of move instructions at the end of immediate control flow predecessors



Then rely on register allocator to coalesce / eliminate moves when possible.





Move instructions pile up in blocks with multiple successors – they're not dead.



**Solution**: place move instructions "in the CFG edge", in a new basic block, whenever predecessor block has several successors.



"Edge-split SSA form": each CFG edge is either its source block's only out-edge or its sink block's only in-edge. Easy to achieve during SSA construction: add empty blocks.








Incorrect result: copy propagation + Φ-elimination incompatible.



Edge split makes copy propagation + Φ-elimination compatible.

# More motivation for edge splitting: "lost copy" problem

Root cause: copy propagation (and other transformations) potentially alter liveness ranges, so that the ranges of different SSA-versions **x**<sub>i</sub> of a source-program variable **x** are not any longer distinct.



After SSA construction, different "versions"  $\mathbf{x}_i$  of a source-program variable  $\mathbf{x}$  are "first-class citizens", unrelated to each other or to  $\mathbf{x}$ .









Incorrect result: copy folding +  $\Phi$ -elimination incompatible.

p true: correct result

**p** false: a and b are identified in first loop iteration, so  $b_2=a_2$  holds upon loop exit, so return value is 0.

Root cause: the moves should "execute in parallel", ie **first** read their RHS, then assign to the LHS variables in **parallel**!

 Φ-functions in a basic block should be considered a single Φ-block, of concurrent assignment, so that the relative order of Φ-functions is irrelevant:



 $\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \leftarrow \Phi \begin{pmatrix} (a_1, b_2) \\ (b_1, a_2) \end{pmatrix}$ 

The Φ-functions in a basic block should be considered concurrent – as a single Φ-block:

$$\begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \leftarrow \Phi \begin{pmatrix} (a_1, b_2) \\ (b_1, a_2) \end{pmatrix}$$

And replacement of  $\Phi$  by moves should respect this interpretation.







#### horizontal : left-to-right



Breaking dependence cycle into sequence of move instructions requires an additional variable.



Resulting code has correct behavior, for p=true and p=false.



In general, the variables in a (unary) Φ-block can form multiple (non-overlapping) cycles, of different length.



New (implicit) sanity condition of SSA: LHS variables should be distinct!

The cycles can be broken in succession, so the single additional variable/register **k** can be reused!

Variables may occur repeatedly in RHS – but only participate in one cycle.

The moves not involved in a cycle (like  $e \leftarrow a$ ) are emitted first.

### Translating out of SSA -- discussion

Some care is needed to avoid lost copies and the swap problem, but basic principle – manifest the intuitive meaning of Φ-functions by locally inserting copy instructions "in the incoming edges" – works fine.

Alternative: globally identify groups of variables that can be unified

- first guess the original variables: works fine, until aggressive optimizations yield overlapping liveness ranges etc.
- Φ-congruence classes (Sreedhar et al., *Translating out of static single assignment form*. 6<sup>th</sup> Static Analysis Symposium, LNCS 1694, Springer, 1999)

Insertion of moves, effect on liveness ranges, etc suggest exploration of interaction between SSA and register allocation

# SSA and register allocation

S. Hack et al., *Register allocation for programs in SSA form.* 15<sup>th</sup> *Conference on Compiler Construction (CC'06), LNCS 3923, Springer, 2006* 

#### Interference graphs of SSA programs are chordal graphs.

Any cycle of > 3 vertices has a *chord*, i.e. an edge that is not part of the cycle but connects two of its vertices.



Key properties of chordal graphs:

1. their chromatic number is equal to the size of the largest clique

2. they can be optimally colored in **quadratic** time (w.r.t. number of nodes)

# SSA and register allocation

S. Hack et al., *Register allocation for programs in SSA form.* 15<sup>th</sup> Conference on Compiler Construction (CC'06), LNCS 3923, Springer, 2006

**Also**: the largest clique in the interference graph of an SSA program P is locally manifest in P: there is at least one instruction  $i_P$  where all members of the clique are live.

Can hence traverse program and obtain required number of colors – and know which variables to spill/coalesce in case we don't have this many registers.

Resulting approach to register allocation:



In ordinary programs, iteration was needed since spilling/coalescing was not guaranteed to reduce the number of colors needed. For SSA, this is guaranteed, if we spill/coalesce variables live at i<sub>P</sub>.

Remember: interference graph of an SSA program P

- interference graph: G=(V, E) where nodes V: program variables edges E: (v, w) c E if there is a program point at which v and w are both live
- SSA: each use of a variable v is dominated by the (unique) definition  $D_v$  of v

Lemma 1: if v and w interfere, either  $D_v$  dominates  $D_w$ , or  $D_w$  dominates  $D_v$ .

Idea: Let **i** be the instruction at which v and w both live. Thus, there are paths **i**  $\cdots \cdots \rightarrow U_v$  and **i**  $\cdots \cdots \rightarrow U_w$ to some uses of v and w. As  $U_v$  is dominated by  $D_v$ , there is a path  $D_v \cdots \cdots \rightarrow i$ . Similarly, there is a path from  $D_w$  to **i**. Hence, entry  $\cdots \rightarrow D_v \cdots \rightarrow i \cdots \rightarrow U_w$ must contain  $D_w$  and entry  $\cdots \rightarrow D_w \cdots \rightarrow i \cdots \rightarrow U_v$ must contain  $D_{v, \cdot}$  From this obtain claim...

Lemma 1: if v and w interfere, either  $D_v$  dominates  $D_w$ , or  $D_w$  dominates  $D_v$ .

Lemma 2: if v and w interfere and  $D_v$  dominates  $D_w$ , then v is live at  $D_v$ .

Lemma 1: if v and w interfere, either  $D_v$  dominates  $D_w$ , or  $D_w$  dominates  $D_v$ .

Lemma 2: if v and w interfere and  $D_v$  dominates  $D_w$ , then v is live at  $D_v$ .

**Theorem 1**: Let C = { $c_1, ..., c_n$ } be a clique in G, ie ( $c_i, c_j$ )  $\in$  E forall i≠j. Then, there is a label in P where  $c_1, ..., c_n$  are all live.

Proof :

- by Lemma 1, the nodes c<sub>1</sub>, ... c<sub>n</sub> are totally ordered by the dominance relationship: c<sub>σ(1)</sub>, ..., c<sub>σ(n)</sub> for some permutation σ of {1, ...n}
- as dominance is transitive, all  $c_{\sigma(i)}$  dominate  $c_{\sigma(n)}$
- by Lemma 2, all  $c_{\sigma(i)}$  are hence all live at  $c_{\sigma(n)}$ .

- we color nodes by stack-based simplify-select (cf Kempe).
- suppose we can simplify nodes in a perfect elimination order: when a node is removed, its remaining neighbors form a clique
- then, when we reinsert the node, we again have a clique
- the size of the latter clique is bound by  $\omega(G)$ , the size of G' largest clique

- we color nodes by stack-based simplify-select (cf Kempe).
- suppose we can simplify nodes in a perfect elimination order: when a node is removed, its remaining neighbors form a clique
- then, when we reinsert the node, we again have a clique
- the size of the latter clique is bound by  $\omega(G)$ , the size of G' largest clique

**Theorem 2**: G admits simplification by a PEO.

(admitting simplification by PEO is equivalent to being chordal)

- we color nodes by stack-based simplify-select (cf Kempe).
- suppose we can simplify nodes in a perfect elimination order: when a node is removed, its remaining neighbors form a clique
- then, when we reinsert the node, we again have a clique
- the size of the latter clique is bound by  $\omega(G)$ , the size of G' largest clique

**Theorem 2**: G admits simplification by a PEO.

(admitting simplification by PEO is equivalent to being chordal)

**Theorem 3**: Chordal graphs are perfect: max colors needed = size of the largest clique

Thus, we can color G (using a PEO) using  $\omega(G)$  many colors, and P contains an instruction where  $\omega(G)$  variables are live (and no instruction with more).

Thus: can traverse P, search for largest local live-set, and obtain #registers.

# SSA and functional programming

- SSA: each variable has a unique site of definition; different uses of the same source-program variable name are disambiguated
  - the **def**-site **dominates** all **use**s
  - in straight-line code, each variable is assigned to only once

# SSA and functional programming

- SSA: each variable has a unique site of definition; different uses of the same source-program variable name are disambiguated
  - the **def**-site **dominates** all **use**s
  - in straight-line code, each variable is assigned to only once

Functional code:

- each name has a unique site of binding: let x = e<sub>1</sub> in e<sub>2</sub>; different uses of the same name are kept apart by the language definition, or can be explicitly disambiguated by α-renaming
- the **binding**-site determines a **scope** that contains all **uses**
- in straight-line code, the value to which a name is bound is never changes

# SSA and functional programming

- SSA: each variable has a unique site of definition; different uses of the same source-program variable name are disambiguated
  - the **def**-site **dominates** all **use**s
  - in straight-line code, each variable is assigned to only once

Functional code:

- each name has a unique site of binding: let x = e<sub>1</sub> in e<sub>2</sub>; different uses of the same name are kept apart by the language definition, or can be explicitly disambiguated by α-renaming
- the **binding**-site determines a **scope** that contains all **uses**
- in straight-line code, the value to which a name is bound never changes – and in a recursive function, we're in different stack frames (but see details on stack frames in later lecture).

Andrew W. Appel: SSA is Functional Programming. ACM SIGPLAN Notices, April 1998.

# SSA and functional programming - correspondences

| Functional concept                                | Imperative/SSA concept                 |
|---------------------------------------------------|----------------------------------------|
| variable binding in let                           | assignment (point of definition)       |
| $\alpha$ -renaming                                | variable renaming                      |
| unique association of binding occurrences to uses | unique association of defs to uses     |
| formal parameter of continuation/local function   | $\phi$ -function (point of definition) |
| lexical scope of bound variable                   | dominance region                       |

| Functional concept                         | Imperative/SSA concept                                      |
|--------------------------------------------|-------------------------------------------------------------|
| subterm relationship                       | control flow successor relationship                         |
| arity of function $f_i$                    | number of $\phi$ -functions at beginning of $b_i$           |
| distinctness of formal parameters of $f_i$ | distinctness of LHS-variables in the $\phi$ -block of $b_i$ |
| number of call sites of function $f_i$     | arity of $\phi$ -functions in block $b_i$                   |
| parameter lifting/dropping                 | addition/removal of $\phi$ -function                        |
| block floating/sinking                     | reordering according to dominator tree structure            |
| potential nesting structure                | dominator tree                                              |
| nesting level                              | maximal level index in dominator tree                       |

- construction of SSA can be recast as transformation of a corresponding functional program; destruction, too
- latent structural properties of SSA often explicit in FP view
- correctness arguments for SSA analyses & transformations transfer to/from functional view



- function bodies: let-bindings for basic instructions (ANF)
- liveness analysis yields formal parameter and argument lists



- function bodies: let-bindings for basic instructions (ANF)
- liveness analysis yields formal parameter and argument lists



- entry point: top-level initial function call
- function bodies: let-bindings for basic instructions (ANF)
- liveness analysis yields formal parameter and argument lists

```
let fun f_1() = let val v = 1
                  val z = 8
                  val y = 4
              in f_2(v, z, y) end
                                               optional
and f_2(v, z, y) = \text{let val } x = 5 + y
                     val y = x * z
                     val x = x - 1
                                              make names
                  in if x=0 then f_3(y, v)
                                                  unique
                     else f_2(v, z, y) end
and f_3(y, v) = \text{let val } w = y + v
               in w end
in f_1() end;
```

<sup>•</sup> as functions are closed, can rename each function definition individually

let fun  $f_1() = let val v_1 = 1$ let fun  $f_1() = let val v = 1$ val z = 8val  $Z_1 = 8$ val y = 4val  $y_1 = 4$ in  $f_2(v, z, y)$  end in  $f_2(v_1, z_1, y_1)$  end optional and  $f_2(v, z, y) = \text{let val } x = 5 + y$ and  $f_2(v_2, z_2, y_2) = \text{let val } x_1 = 5 + y_2$ val  $y_3 = x_1 * z_2$ val y = x \* zmake names val  $x_2 = x_1 - 1$ val x = x - 1in if x=0 then  $f_3(y, v)$ in if  $x_2=0$  then  $f_3(y_3, v_2)$ unique else  $f_2(v, z, y)$  end else  $f_2(v_2, Z_2, V_3)$  end and  $f_3(y, v) = \text{let val } w = y + v$ and  $f_3(y_4, v_3) = \text{let val } w_1 = y_4 + v_3$ in w end in w<sub>1</sub> end in  $f_1()$  end; in  $f_1()$  end;

as functions are closed, can rename each function definition individually



# Removing unnecessary arguments: λ-dropping

- transformation of functional programs to eliminate formal parameters
- can be performed before or after names are made unique former option more instructive
- (inverse operation: λ-lifting)
- 2 phases: block sinking and parameter dropping

remove parameters

modify nesting structure of function definitions

#### Removing unnecessary arguments: block sinking

Observation: if

- all calls to g are in body of f (or g), and
- g is closed (all free variables of body are parameters)
   then the definition of g can be moved inside the definition of f



# Block sinking: example



(in fact, insert  $f_3$  "in the edge" is only in the then-branch – cf edge split form)
#### Block sinking: example



Block sinking makes dominance structure explicit:  $f_2 = idom(f_3)$ , and  $f_1 = idom(f_2)$ 

# Parameter dropping I

```
let fun f_1() = let val v = 1
                                                            Parameters y and v of f_3:
                 val z = 8
                                                      tightest scope for y (ie the def of)
                 val y = 4
                                                     surrounding the call to f_3 is also the
             in let fun f_2(v, z, y) =
                   let val \sqrt{3} = 5 + y
                                                        tightest scope surrounding the
                       val y = x * z
                                                               function definition f_3.
                       val x1 + x - 1
                                                      Can hence remove parameter y –
                   in if x=0
                                                           and similarly parameter v.
                   then let fun f_3(y, v) =
                                   let val w = y + v
in w end
                         in f_3(y, \dot{v}) end
                   else f_2(v, z, y) end
                                                 let fun f_1() = \dots in if x=0
                in f_2(v, z, y) end
                                                                    then let fun f_3() =
in f_1() end;
                                                                                    let val w = y + v
                                                                                    in w end
                                                                         in f<sub>3</sub>() end
```

else ...

# Parameter dropping II

```
let fun f_1() = let val v = 1
                  va|z = 8
                  val y = 4
              in let fun f_2(v, z, y) =
                     let val x = 5 + y
                         val y = x * z
                         val x = x - 1
                     in if x=0
                     then let fun f_3() = \dots
                           in f_3() end
                     else f_2(v, z, y) end
                 in f_2(v, z, y) end
in f_1() end;
```

Similarly, the external call to  $f_2$  from within the body of  $f_1$  would allow to remove all three parameters from  $f_2$ .

# Parameter dropping III

```
let fun f_1() = let val v = 1
                  val z = 8
                  val y = 4
               in let fun f_2(v, z, y) =
                     let val x = 5 + y
                         val y = x * z
                         val x = x - 1
                     in if x=0
                     then let fun f_3() = \dots
                           in f_3() end
                     else f_2(v, z, y) end
                  in f_2(v, z, y) end
in f_1() end;
```

Similarly, the external call to  $f_2$  from within the body of  $f_1$  would allow to remove all three parameters from  $f_2$ .

Recursive call of f<sub>2</sub>:

- admits the removal of parameters v and z, since the defs associated with the uses at the call site are the defs in the formal parameter list
- does not admit the removal of parameters y, since the def associated with the use of y at the call site is not the def in the formal parameter list

#### Parameter dropping IV



Superfluous Φ-functions avoided.

SSA discipline shares many properties with tailrecursive, first-order fragment of functional languages

- transfer of analysis/optimization algorithms
- suitable intermediate format for compiling functional and imperative languages
  - function calls not in tail position: calls to imperative functions/methods/procedures
- alternative functional representation of control flow: continuations