Topic 11: Loops

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Loop Preheaders

Recall:
e A /oop 1s a set of CFG nodes S such that:

1. there exists a header node h 1n S that dominates all nodes 1n S.

— there exists a path of directed edges from / to any node m S.
— h 1s the only node 1n S with predecessors not in .S.

2. from any node 1n 5, there exists a path of directed edges to /.
e A loop 1s a single entry, multiple exit region.
Loop Preheaders:

e Some loop optimizations (loop invariant code removal) need to insert statements
immediately before loop header.

e Create a loop preheader - a basic block betore the loop header block.

Loop Preheader Example

. - goto L goto L
goto goto \ /

\ / Preheader

L:....... ‘
Loop-invariant |
] code motion
if x>5 goto L
l if x>5 goto L

l

Loop Invariant Computation

e (Given statements mloop s: £t = a; op ao:

— s 18 loop-mvanant if a1, as have same value each loop iteration.

— may sometimes be possible to hoist s outside loop.

e Cannot always tell whether « will have same value each iteration — conservative
approximation.

e d:t = a; op asisloop-mnvariant within loop L 1f for each «;:

l. a; 1s constant, or
2. all definitions of «; that reach d are outside L, or

3. only one definition of «; reaches d, and 1s loop-invariant.

Loop Invarient Computation

[terative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands

- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands

- are constant,
- whose reaching definitions are outside loop, or

- which have a single reaching definition in loop
marked invariant.

Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.
l: rl =0

Preheader:

LICM: motivating constraint 1

l rl =0
V

2 12 =135
v

Preheader:

P —

3: branch r3 <N What could go wrong?

f_"_"_"h""""_"""h \
- + r3=r3+1

V

> rl =r2 + 10
V II

o M]r3]| =rl
{

LICM: Constraint 1

d:t = a op b

d must dominate all loop exit nodes where t 1s live out.

l:

Preheader:

(d

rl =0

v

V.

branchr3 <N

—

/

3 =13+ |

-

—

/

rl =12 + 10

V

M[r3] =rl

y

jump

Moving | 5:r1 =r2+10

into

preheader is illegal: final

value of r4 incorrect.

LICM: motivating constraint 2

1:

2:

Preheader:

3:

4:

rl=12+10

I

M[r3] =1l

M[r3+4] = r1

]

branchr3 <N

What could go wrong?

LICM: Constraint 2

d:t = a op b
there must be only one definition of t 1nside loop.

I: rl =0
v
2: 12=135
v
Preheader: . .
P— Moving | 4:r1 =r2+10 | into
3: r3=13+1 ‘ preheader is illegal: second
(and later) iteration would
4 rl=r2+10 | use incorrect value of 1 in
Vo~ | instruction 5.
i) wm3)€n) | _
A
6: rl =)0 c) =
—1 Possible solution: make 6:r1'=0
7:[_Mirs*4] = variable names distinct: |
]
8: branch r3 <N r f [M[r3] =11
— —
9. Principled approach: SSA ;

LICM: motivating constraint 3

l:

3.
.

Preheader:

3:

branch 13 <

4=rl

V

What could go wrong?

LICM: Constraint 3

d:t = a op b
t must not be live-out of loop preheader node (live-in to loop)

l: k rl1 90
V
2: 12=25
Preheader:
Vo~
3: M[13]E 11) Moving | 5:r1 =r2+10 | into
y preheader is illegal: initial
4. r3=r3+1 iteration would read
incorrect value from r1
5: rl =12+ 10
)l |

6f M[r3+4]=r1

(SSA's variable renaming will

7: branch r3 <N / o , .
— get this right, using a trick...)
8: 14 =1l

V

LICM

Algorithm for code motion:
e Examine invariant statements of L in same order in which they were marked.

e [f mmvariant statement s satisfies three criteria for code motion, remove s from L. and
insert into preheader node of L.

Induction Variables

Varable 1 1n loop L 1s called induction variable of L 1f each time i changes value in L,

it 1s incremented/decremented by loop-invariant value.
Assume a, c¢ loop-invariant.

e i 1s an induction variable

. ?V‘j:ff \ e j 1s an induction variable
1=1+a | ' '
\V ".‘ —3j = 1 * ci1sequvalent to
S — j=3+axc
J=1 ¢ —computee = a * c outside loop:
V T—— j = j + e = strength reduction

— may not need to use 1 1n loop = induction

variable elimination

0=i0*c
1=i0+a

j1=i1*c=(0+a)*c=(0*c)+(a*c)=j0+a*c

Induction Variable Detection

Scan loop L for two classes of induction variables:

e basic induction variables - variables (1) whose only definitions within L are of the
foomi = 1 + cori = i - c, ci1sloop invariant.

e derived induction variables - variables (j) defined only once within L, whose value
1s linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable
e i 1s basic induction variable; a and b are loop mnvariant.
e value of j at point of definitionisa + b * 1

e j belongs to the family of 1

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

e Scan statements of L for basic induction variables i

-

— for each i, associate triple (1, 0, 1) l*A+0 =«
— 1 belongs to 1ts own famuly.

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:
e Scan statements of L for basic induction variables i
— for each i, associate triple (1, 0, 1) l*A+0 =«
— 1 belongs to 1ts own famuly.
e Scan statements of L for derived induction variables k:

1. there must be single assignment to k within L of the foomk = j * cor
k = j + d,j1saninduction variable; ¢, d loop-invariant, and
2.

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

e Scan statements of L for basic induction variables i
— for each i, associate triple (1, 0, 1) l*A+0 =«
— 1 belongs to 1ts own famuly.

e Scan statements of L for derived induction variables k:
1. there must be single assignment to k within L of the foomk = j * cor

k = j + d,j1saninduction variable; ¢, d loop-invariant, and

2.1f j 1s a dentved induction variable belonging to the family of 1, then:

— the only definition of j that reaches k must be one m L, and

— no definition of 1 must occur on any path between definition of j and definition
of k

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

e Scan statements of L for basic induction variables i

-

— for each i, associate triple (1, 0, 1) l*A+0 =«
— 1 belongs to 1ts own famuly.

e Scan statements of L for derived induction variables k:

1. there must be single assignment to k within L of the foomk = j * cor
k = j + d,j1saninduction variable; ¢, d loop-invariant, and
2.1f j 1s a dentved induction variable belonging to the family of 1, then:
— the only definition of j that reaches k must be one m L, and
— no definition of 1 must occur on any path between definition of j and definition

of k
e Assume j associated with triple (1, a, b):j = a + b * i atpointof defi-
nition.
e Can determine triple for k based on triple for j and instruction defining k:
-k =] * ¢c— (1, a*c, b*c)
-k =3 +d— (1, a + d, b)
In general: k =j*c + d = (i, a*c+d, b*c), but there’s usually no instruction form k = j*c + d...

Induction Variable Detection: Example

s = 0;

for(i = 0; 1 < N; 1i++

s += ali];

1:

2:

Preheader:

10: 4:

r1=0 (*var

I

12=0 (*var

I

Vo

branch12 =N

I

13=12%4

v

=r3+a

v

15 =M][r4]

v

rl=rl+r5

)

able s ¥)

able i %)

v

2=12+1

Jump

basic induction variable(s)?

derived induction variables?

Induction Variable Detection: Example

s = 0;
for(i = 0; 1 < N; 1i++)
s += ali];

1: r1=0 (*varjables ™)
v
2: 12=0 (*varjablei?)
v
Preheader:
[
3:| branchr2>=N
v
10: 4: 13=12%4
r37(r2, 0, 4) {
[r4 (r2,a,4) 1'4:13“
derived ind.var. 6| B~ i{"{[“‘”
7 rl=rl+r5
¥
r2:(r2, 0,1) 8: 2=12+1
/ ¥
9: Jump

basic ind.var.

Strength Reduction: replace by cheaper instruction

1. For each derived induction variable § with triple (i, a, b), create new j’.
e all dertved induction variables with same triple (i, a, b) may share §’

2. After each definitionof i n L, 1 = 1 + c, insert statement:
i’ = ' + b * c

e b * c 1s loop-invarnant and may be computed in preheader or during compile
time.

3. Replace unique assignment to j witli j o= 3", ‘

4. Initialize j* at end of preheader node:

i’ = b * 1
it =3+ a

e Strength reduction still requires multiplication, but multiplication now performed
outside loop.

e j’ alsohas triple (1, a, b)

Strength Reduction Example

1: r1=0
v
2- 2=0
v
Preheader:
\l(.;.'---""_-___ -
3 branch 12 >= N \
10: 3:(12,0,/4)4| 13=12*4
]
r4d:(r2,a,4)s: r4=r13+a |
v
6 15 = M[r4]
v
7- rl =1l +15 ||
12:(r2,0, 1) :
(208 2-n+) | 133 =r33 + 4*1
7
0: jump /|14l =144 + 4*1

Strength Reduction Example

r3’ =r33 + 4*1
r4’ = r44 + 4*1

1: rl1=0
v
2: 2=0
v
Preheader:
\IL«.—.------""' T
3: branch 12 >= N \
_‘-:——-—"__________________\l(Illll",
10; 3:(2,0)4)4| =174 r3=133
|
r4: (r2, a, 4) 5- A=13T2 r4=r|44
v
6: 15 =M[r4]
v
7 rl=rl+15 ||
w |
r2:(r2,0,1)g. D=1+ 1
F
0: jlm?-l-{...______ /

Strength Reduction Example

r3’ =r33 + 4*1
r4’ = r44 + 4*1

1: rl1=0
v
2: 2=0
v
Preheader: :
|
\lf |
3: branch 1‘2_--i_>= N \
10; 3:(2,0)4)4| =174 r3=133
|
r4: (r2, a, 4) 5- A=13T2 r4=r|44
v
6: 15 =M[r4]
v
7: rl=rl +15 ||
w |
r2:(r2,0,1)g. D=1+ 1
WL
0: jlm?-l-{...______ /

Example

Strength Reduction
1: r1=0
2: 12=0
Preheader: 133 =12 * 4
133=133-0
44 =12 * 4
rd4=rd44 + a
B
3: branch r2 ==N
H I
10: 4: r3 =r33
5: r4 =r44
6: 15 =M][r4]
7. rl=rl1+15
8. r2=r2+1
8 133=r33 -4
87 44 =144 + 4
.'J,"
9: jump

Strength reduction introduces
more opportunities for code
optimization . . .

Induction Variable Elimination

After strength reduction has been performed:
e some nduction variables are only used mn comparisons with loop-invariant values.
e some induction variables are useless

— dead on all loop exits, used only 1 definition of 1tself.

— dead code elimination will not remove useless induction variables.

Induction Variable Elimination Example

1: r1=0
2: r2=0
.'l"
Preheader: 133 =12 % 4
133 =133+0
44 =12 * 4
44 =144 + a
[P
3: branch 12 ==N
) J
10: 4: r3 =r33
5: r4 =r44
6: 15 =M][r4]
7: rl=rl+15
.'l"
a8 2=r2+1
8 133 =133 +4
8 44 =144 + 4
9: jump

Any dead assignments?
Useless variables?
Copy propagation?

Induction Variable Elimination Example

1: r1=0
2: r12=0
LN
\
Preheader: \-}—‘Hf
ri3i= a
133 =220
r44 =é—<r 0
144 = rdd-+4
[P
3: branch 12 ==N
- v
10: 4: 3= 3
.Ill.
5: r4 =r44
N
6: 15 =M][r4]
7: rl=rl+15
.'l"
a8 2=r2+1
"l'l
an 133 =133 +4
8| r44=r44+4
9: jump

dead

10:

".r -

Preheader:

o]

...
-

] |——

=1 I ™= 1
=

r33=10

r4d4=a

[P

branch r2 >=N

I

r5 = M[rd4]

rl=rl+13

'l'"

r2=1r2+1

]1;

133=1r33+4

44 =144 + 4

'l'"

ump

Induction Variable Elimination Example

1: r1=0
2: r12=0
LN
\
Preheader: \-}—‘Hf
ri3i= a
133 =220
r44 =é—<r 0
144 = rdd-+4
[P
3: branch 12 ==N
- v
10: 4: 3= 3
.Ill.
5: r4 =r44
N
6: 15 =M][r4]
7: rl=rl+15
.'l"
a8 2=r2+1
"l'l
an 133 =133 +4
8| r44=r44+4
9: jump

dead

".r -

Preheader:

10° ' 5

33 dead

[P

branch r2 >=N

I

r5 = M[rd4]

rl=rl+13

'l'"

r2=1r2+1

]1;

TH=33+ 433

44 =144 + 4

'l'"

useless

ump

Induction Variable Elimination

e Variable k 1s almost useless if 1t 1s only used 1n comparisons with loop-mvariant
values, and there exists another induction variable t in the same family as k that 1s
not useless.

e Replace k i comparison with t
— k 15 useless

Induction Variable Elimination: Example

l: r1=0
v
2: 12=0
v
Preheader:
44 =a
vV .
3:] bramcirr2==N2 almost useless
~ Y
10: 5
5 = M[r44]
V
7T rl =1l +r15
v
8: 12=12+1
v
8 144 =144 + 4
v
9: jump

Induction Variable Elimination: Example

1: r1=20
v

2: °—"0 r2 dead
v

Preheader:
144 =a
r100=4*N
r101 =r100 +a

v .

3:| branch r44 >=1101
[}

10: 5:
5 = M[rd4]

V

7: rl =1r1+15
¥

8: r>=r3——— 2 useless
v

8| 44=r144+4

v

9: jump

No more optimizations for now.

Loop unrolling: Example

Idea: combine several iterations of a loop
* # iterations static constant: can unroll fully to straight-line code,
eliminating comparison/jump operation
* #iterations fixed (ie loop bound does not change inside the body):
* reduces #iterations/conditional jumps/induction variable increments
« occasionally beneficial for parallelization, scheduling

Running example: L1:[x € M[i]
S&stX
&< i+4
ifi <ngoto L1 else L2

L2:]...

Naive loop unrolling: simple example

L1:{x € M[i]
SESs+X
< i+4
ifi <ngoto L1 else L2

L2:] ...

L2:]| ...

I x €M[i]

S€stHX
< i+4
ifi<ngoto ' else L2

I x € M[i]

s&stX
& i+4

ifi<ngoto L1 else L2

]

1

1. Copy loop to make L with header h’ and back edges s’ = h’

Naive loop unrolling: simple example

L1:

L2:] ...

X< M[i]
SESs+X
< i+4
ifi <ngoto L1 else L2

L1"

L2:]| ...

I x €M[i]

SESs+X
< i+4
ifi<ngoto L1 else L2

g

X< M[i]
SE€StX
| < i+4
ifi<ngoto L1 else L2

]

1

1. Copy loop to make L with header h’ and back edges s’ = h’
tos, 2N

2. Change back edgesin | from s, =

Naive loop unrolling: simple example

L1: | x € M[i] I x€M[i]
SE€stX SE€stHX
< i+4 &< i+4

ifi <ngoto L1 else L2 ifi <ngoto L1 else L2
L2:] ... LT x €M[i]
SE€StX
&< i+4

ifi<ngoto else L2

1

L2:]| ...

1. Copy loop to make L with header h’ and back edges s’ = h’
2. Change back edgesin | froms, =2 htos =2 h’
3. Change back edgesinL froms = h'tos -

Naive loop unrolling: simple example

L1: | x € M[i] | x € M[i]
SE€stX S€stX
| & i+4 | & i+4
ifi <ngoto L1 else L2 ifi <ngoto L1 else L2
L2:] ... LT x €M[i]

SEStX
| < i+4
ifi<ngoto ' else L2

1

L2:] ...

1. Copy loop to make L with header h’ and back edges s’ = h’
2. Change back edgesin | froms, =2 htos =2 h’
3. Change back edgesinL froms = h'tos -

But: little optimization — still 2 increments and 2 conditional jumps...

Loop unrolling: “optimistic” merging of bodies

L1"

L2:] ...

I x €M

S&€Ss+X
&< i+4
ifi <ngoto L1 else L2

4t

X< MJ[i]
s&s+X
| &< i+4

ifi<ngoto " else L2

1

i+4 still needs to be computed... /

But: only correct if original loop performed even number of iterations!

Observe: only one back edge, and
both increments to the induction
variable i dominate this back edge.
Naive merging of L1 and L1";

I x € MTi]

S&stX
it

I x €M i+

StX
i< i+A 8
if i < n goto

!

else L2

L2:] ...

Loop unrolling: correcting optimistic merge

I x€M[i] ifi+4<ngoto else L4
S €& Ss+X l
 ird
ifi<ngotol1 elsel2 | x <€ M[i]
. L SE€ St+X
N x e M i X € M[i+4]
SE€St+X
. . S € StX
i< i+A 8 N
i< t se 12 | &< 1+8
T1=ngoto - eise ifi+4<n goto else L3
l “do at mosjone
more iteratgon” ‘
L2:| ... | 3 |ifi <ngoto 4 else L2
Execute remaining iteration (if v LA x € M[i]
: ' “do exactly one SE€stX
necess.ary) In a new loop epilogue coeEen o "¢ ira
and adjust control flow ! ¥ S
L2:

Program different from Program 18.11(b) in MCIML, page 424!

Loop unrolling: unroll K iterations

ifi + 4 <n goto

else |4

}

I x €M[i]

s€&s+X
X€ M[i+4]
S&s+X
| < i+8

ifi+4<n goto | 1 else L3

“do at mosjone

more iteratfon”

{

L3:

ifi <ngoto L4 else L2

“do exactly one
more iteration”

L2:] ...

epil

ifi +4 (K-1) <ngoto

else [4

“do at mogt K-
more iteraion”

“do at least one
and at most K-1
more iterations”

gue loop

|

I x €M[i]

SES+X

X< M[i+4(K1)]
S € s+X
| < i+4K
ifi +4 (K-1) <n goto

else L3

¥

‘| ifi <ngoto L4 else L2

¥

I x € MJi]

S € StX
< i+4
ifi <ngoto L4 else L2

v

L2:1...

K>2

Loop unrolling: unroll K iterations

ifi+4 (K-1) <ngoto

else .4

|

Ix€EMJ[i]
S & S+X

S&Ss+X
i< i+4K
ifi+4 (K-1)<n

x & M[i+4 (K]

goto | else L3

¥

" ifi <ngoto L4 else L2

¥

“d(

X€EMJ[i]
S & S+X
| & i+4

ifi <ngoto L4 else L2

an
Mmd

ndo
Mol

Y

K>2

ifi +4 (K-1) <n goto

else [4

|

I x €M[i]

SES+X

X&€ M[i+4(K-1)]
Ss&stX
i€ i+4K

ifi+4 (K-1)<n goto ' else L3

L4:

) at least one

1 at most K-1

XxX€MJ[i]
SE&stX
& i+4

re iterations”

at most K-1
e iteration”

—)
L3:

l

ifi <ngoto L4 else L2

L2:] ...

K>2

Swapping order of blocks L3/L4 optimizes code size — at the price of irreducibility!

