Topic 11: Loops

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Loop Preheaders

Recall:

- A loop is a set of CFG nodes S such that:

1. there exists a header node h in S that dominates all nodes in S.

- there exists a path of directed edges from h to any node in S.
- h is the only node in S with predecessors not in S.

2. from any node in S, there exists a path of directed edges to h.

- A loop is a single entry, multiple exit region.

Loop Preheaders:

- Some loop optimizations (loop invariant code removal) need to insert statements immediately before loop header.
- Create a loop preheader - a basic block before the loop header block.

Loop Preheader Example

Loop Invariant Computation

- Given statements in loop $s: t=a_{1}$ op a_{2} :
$-s$ is loop-invariant if a_{1}, a_{2} have same value each loop iteration.
- may sometimes be possible to hoist s outside loop.
- Cannot always tell whether a will have same value each iteration \rightarrow conservative approximation.
- $d: \mathrm{t}=a_{1}$ op a_{2} is loop-invariant within loop L if for each a_{i} :

1. a_{i} is constant, or
2. all definitions of a_{i} that reach d are outside L, or
3. only one definition of a_{i} reaches d, and is loop-invariant.

Loop Invarient Computation

Iterative algorithm for determining loop-invariant computations: mark "invariant" all definitions whose operands

- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands

- are constant,
- whose reaching definitions are outside loop, or
- which have a single reaching definition in loop marked invariant.

Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.

Subject to some constraints.

LICM: motivating constraint 1

LICM: Constraint 1

$d: \mathrm{t}=\mathrm{a}$ op b
d must dominate all loop exit nodes where t is live out.

Constraint 1

LICM: motivating constraint 2

LICM: Constraint 2

$d: \mathrm{t}=\mathrm{a} o \mathrm{p} \mathrm{b}$
there must be only one definition of t inside loop.

Moving 4: r1 = r2+10 into preheader is illegal: second (and later) iteration would use incorrect value of $\mathbf{r 1}$ in instruction 5.

Possible solution: make variable names distinct:

Principled approach: SSA

LICM: motivating constraint 3

LICM: Constraint 3

$$
d: \mathrm{t}=\mathrm{a} \text { op } \mathrm{b}
$$

t must not be live-out of loop preheader node (live-in to loop)

Algorithm for code motion:

- Examine invariant statements of L in same order in which they were marked.
- If invariant statement s satisfies three criteria for code motion, remove s from L, and insert into preheader node of L.

Induction Variables

Variable i in loop L is called induction variable of L if each time i changes value in L, it is incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

- i is an induction variable

Induction Variable Detection

Scan loop L for two classes of induction variables:

- basic induction variables - variables (i) whose only definitions within L are of the form $i=i+c$ or $i=i-c, c$ is loop invariant.
- derived induction variables - variables (j) defined only once within L, whose value is linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable j

- i is basic induction variable; a and b are loop invariant.
- value of j at point of definition is $a+b * i$
- j belongs to the family of i

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
- for each i, associate triple (i, 0, 1)
$1 \cdot i+0=i$
- i belongs to its own family.

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
- for each i, associate triple (i, 0, 1)

$$
1 \cdot i+0=i
$$

- i belongs to its own family.
- Scan statements of L for derived induction variables k :

1. there must be single assignment to k within L of the form $\mathrm{k}=\mathrm{j} * \mathrm{c}$ or $k=j+d, j$ is an induction variable; c, d loop-invariant, and 2.

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
- for each i, associate triple (i, 0, 1)

$$
1 \cdot i+0=i
$$

- i belongs to its own family.
- Scan statements of L for derived induction variables k :

1. there must be single assignment to k within L of the form $\mathrm{k}=\mathrm{j} * \mathrm{c}$ or $k=j+d, j$ is an induction variable; c, d loop-invariant, and
2. if j is a derived induction variable belonging to the family of i, then:

- the only definition of j that reaches k must be one in L, and
- no definition of i must occur on any path between definition of j and definition of k

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
- for each i, associate triple (i, 0,1$) \quad 1 \cdot i+0=i$
- i belongs to its own family.
- Scan statements of L for derived induction variables k :

1. there must be single assignment to k within L of the form $\mathrm{k}=\mathrm{j} * \mathrm{c}$ or $\mathrm{k}=\mathrm{j}+\mathrm{d}, \mathrm{j}$ is an induction variable; c, d loop-invariant, and
2. if j is a derived induction variable belonging to the family of i, then:

- the only definition of j that reaches k must be one in L, and
- no definition of i must occur on any path between definition of j and definition of k
- Assume j associated with triple (i, $a, b): j=a+b * i$ at point of definition.
- Can determine triple for k based on triple for j and instruction defining k :
$-k=j * c \rightarrow(i, a * c, b * c)$
$-k=j+d \rightarrow(i, a+d, b)$
In general: $k=j^{*} c+d \rightarrow\left(i, a^{*} c+d, b^{*} c\right)$, but there's usually no instruction form $k=j^{*} c+d \ldots$

Induction Variable Detection: Example

$\mathrm{S}=0$;
for(i $=0 ; i<N ; i++)$
s += a[i];

Induction Variable Detection: Example
$\mathrm{S}=0$;
for(i $=0 ; i<N ; i++)$
s + = a[i];

Strength Reduction: replace by cheaper instruction

1. For each derived induction variable j with triple ($i, ~ a, ~ b)$, create new j^{\prime}.

- all derived induction variables with same triple (i, a, b) may share j^{\prime}

2. After each definition of i in L, $i=i+c$, insert statement:
$j^{\prime}=j^{\prime}+b$ * c

- b * c is loop-invariant and may be computed in preheader or during compile time.

3. Replace unique assignment to j with $j=j^{\prime}$.
4. Initialize j^{\prime} at end of preheader node:
$j^{\prime}=b * i$
$j^{\prime}=j^{\prime}+a$

- Strength reduction still requires multiplication, but multiplication now performed outside loop.
- j' also has triple (i, a, b)

Strength Reduction Example

Strength Reduction Example

Strength Reduction Example

Strength Reduction Example

Strength reduction introduces more opportunities for code optimization...

Induction Variable Elimination

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are useless
- dead on all loop exits, used only in definition of itself.
- dead code elimination will not remove useless induction variables.

Induction Variable Elimination Example

Any dead assignments?
Useless variables?
Copy propagation?

Induction Variable Elimination Example

Induction Variable Elimination Example

Induction Variable Elimination

- Variable k is almost useless if it is only used in comparisons with loop-invariant values, and there exists another induction variable t in the same family as k that is not useless.
- Replace k in comparison with t
$\rightarrow \mathrm{k}$ is useless

Induction Variable Elimination: Example

Induction Variable Elimination: Example

No more optimizations for now.

Loop unrolling: Example

Idea: combine several iterations of a loop

- \# iterations static constant: can unroll fully to straight-line code, eliminating comparison/jump operation
- \# iterations fixed (ie loop bound does not change inside the body):
- reduces \#iterations/conditional jumps/induction variable increments
- occasionally beneficial for parallelization, scheduling

Running example:

Naïve loop unrolling: simple example

1. Copy loop to make L' with header h^{\prime} and back edges $\mathrm{s}_{\mathrm{i}}^{\prime} \rightarrow \mathrm{h}$ '

Naïve loop unrolling: simple example

1. Copy loop to make L' with header h^{\prime} and back edges $\mathrm{s}_{\mathrm{i}}^{\prime} \rightarrow \mathrm{h}^{\prime}$
2. Change back edges in L from $s_{i} \rightarrow h$ to $s_{i} \rightarrow h^{\prime}$

Naïve loop unrolling: simple example

1. Copy loop to make L' with header h^{\prime} and back edges $\mathrm{s}_{\mathrm{i}}^{\prime} \rightarrow \mathrm{h}^{\prime}$
2. Change back edges in L from $s_{i} \rightarrow h$ to $s_{i} \rightarrow h^{\prime}$
3. Change back edges in L^{\prime} from $s_{i}^{\prime} \rightarrow h^{\prime}$ to $s_{i}^{\prime} \rightarrow h$

Naïve loop unrolling: simple example

1. Copy loop to make L' with header h' and back edges $\mathrm{s}_{\mathrm{i}}^{\prime} \rightarrow \mathrm{h}^{\prime}$
2. Change back edges in L from $s_{i} \rightarrow h$ to $s_{i} \rightarrow h^{\prime}$
3. Change back edges in L^{\prime} from $s_{i}^{\prime} \rightarrow h^{\prime}$ to $s_{i}^{\prime} \rightarrow h$

But: little optimization - still 2 increments and 2 conditional jumps...

Loop unrolling: "optimistic" merging of bodies

i+4 still needs to be computed...
Observe: only one back edge, and both increments to the induction variable i dominate this back edge. Naïve merging of L1 and L1':

But: only correct if original loop performed even number of iterations!

Loop unrolling: correcting optimistic merge

Execute remaining iteration (if necessary) in a new loop epilogue and adjust control flow !

Program different from Program 18.11 (b) in MCIML, page 424!

Loop unrolling: unroll K iterations

Loop unrolling: unroll K iterations

Swapping order of blocks L3/L4 optimizes code size - at the price of irreducibility!

