Topic 10: Dataflow Analysis

COS 320

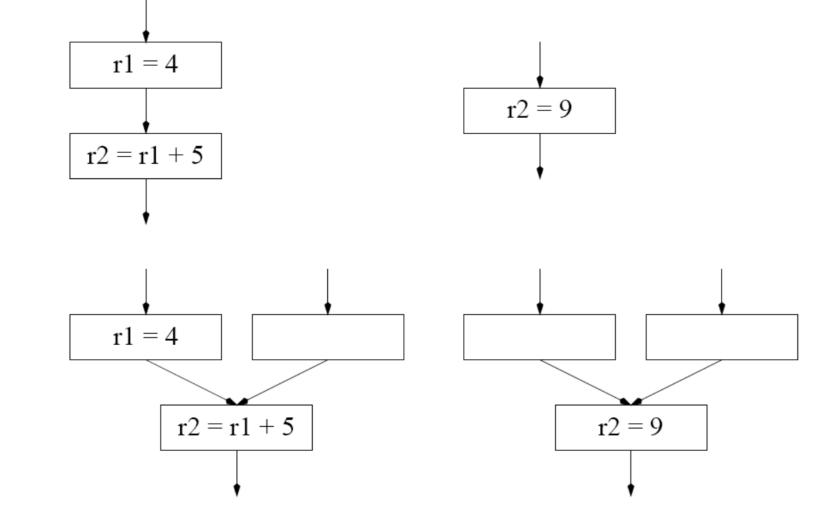
Compiling Techniques

Princeton University Spring 2016

Lennart Beringer

- Analysis:
 - Control Flow Analysis
 - Dataflow Analysis
- Transformation:
 - Register Allocation
 - Optimization
 - * Machine dependent/independent
 - * Local/Global/Interprocedural
 - * Acyclic/Cyclic
- analysis spans multiple procedures
- Scheduling single-procedure-analysis: intra-procedural

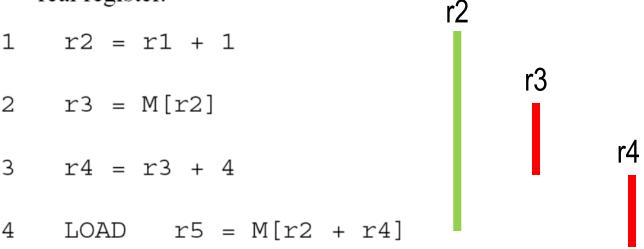
Constant Propagation and Dead Code Elimination:



Needs dominator, liveness, and reaching definition information.

Register Allocation:

- Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.
- Pseudo-assembly must be examined by *live variable analysis* to determine which virtual registers contain values which may be used later.
- Virtual registers which are not simultaneously *live* may be mapped onto the same real register.



Assuming only r5 is live-out at instruction 4...

Dataflow Analysis

Three types we will cover:

- Live Variable
 - Live range for register allocation
 - Scheduling
 - Dead code elimination
- Reaching Definitions
 - Constant propagation
 - Constant folding
 - Copy propagation
- Available expressions
 - Common subexpression elimination

Iterative Dataflow Analysis Framework

- \bullet These dataflow analyses are all very similar \rightarrow define a framework.
- Specify:
 - Two set definitions A[n] and B[n]
 - A transfer function f(A, B, IN/OUT)
 - A confluence operator \lor .
 - A direction FORWARD or REVERSE.
- For forward analyses:

$$IN[n] = \bigvee_{p \in PRED[n]} OUT[p]$$
$$OUT[n] = f(A, B, IN)$$

• For reverse analyses:

$$OUT[n] = \bigvee_{s \in SUCC[n]} IN[s]$$
$$IN[n] = f(A, B, OUT)$$

Control Flow Definitions:

- CFG node has *out-edges* leading to *successor nodes*.
- CFG node has *in-edges* coming from *predecessor nodes*.
- For each CFG node n, PRED[n] = set of all predecessors of <math>n.
- For each CFG node n, SUCC[n] = set of all successors of n.

Iterative Dataflow Analysis Framework

- Iterative dataflow analysis equations are applied in an iterative fashion until IN and OUT sets do not change.
- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.
- IN and OUT sets initialized to \emptyset .

```
For each node n {
    IN[n] = OUT[n] = {};
}
Repeat {
    For each node n in forward/reverse topological order {
        IN'[n] = IN[n];
        OUT'[n] = OUT[n];
        IN[n], OUT[n] = (Equations);
    }
} until IN'[n] = IN[n] and OUT'[n] = OUT[n] for all n.
```

Liveness Definitions:

- A source (RHS) register t is a use of t.
- A destination (LHS) register t is a *definition* of t.
- A register t is *live* on edge e if there exists a path from e to a use of t that does not go through a definition of t.
- Register t is *live-in* at CFG node n if t is live on any in-edge of n.
- Register t is *live-out* at CFG node n if t is live on any out-edge of n.

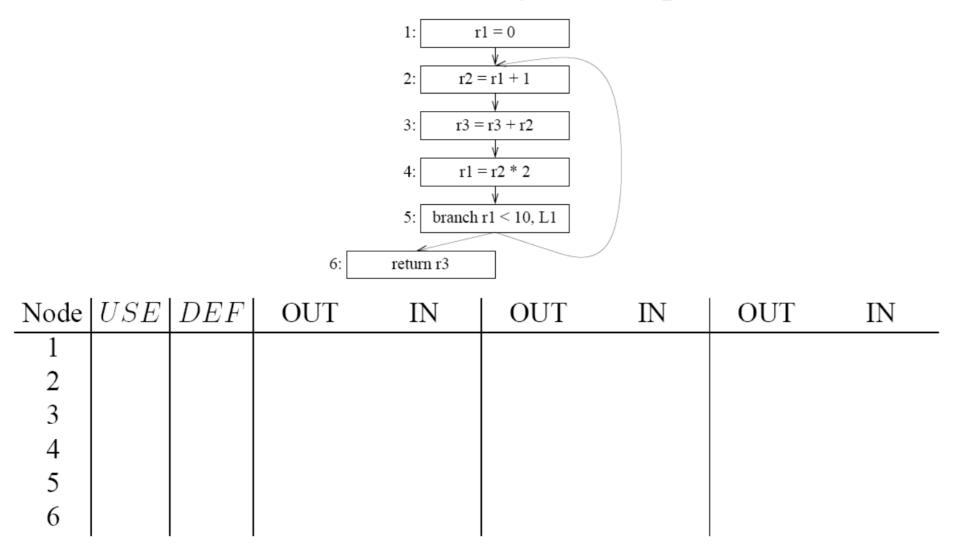
Definitions for Liveness Analysis

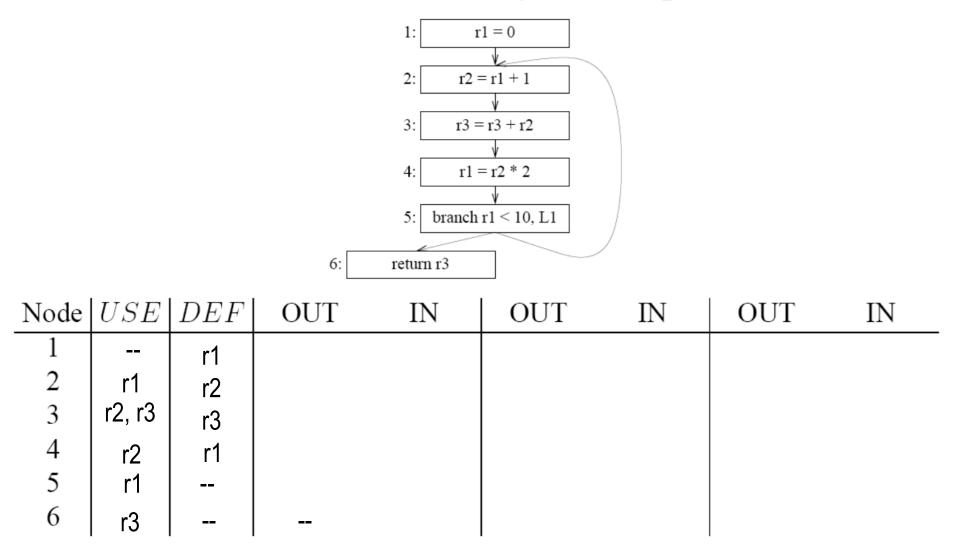
Live Variable Analysis Equation:

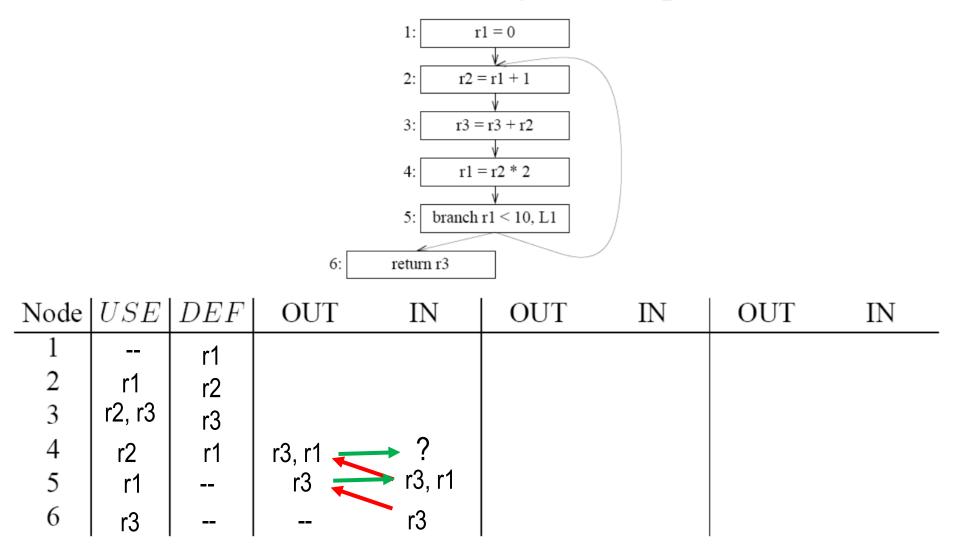
- Set definition (A[n]): USE[n] the set of registers that n uses.
- Set definition (B[n]): DEF[n] the set of registers that n defines.
- Transfer function (f(A, B, OUT)): $USE[n] \cup (OUT[n] DEF[n])$
- Confluence operator (\lor): \cup
- Direction: REVERSE

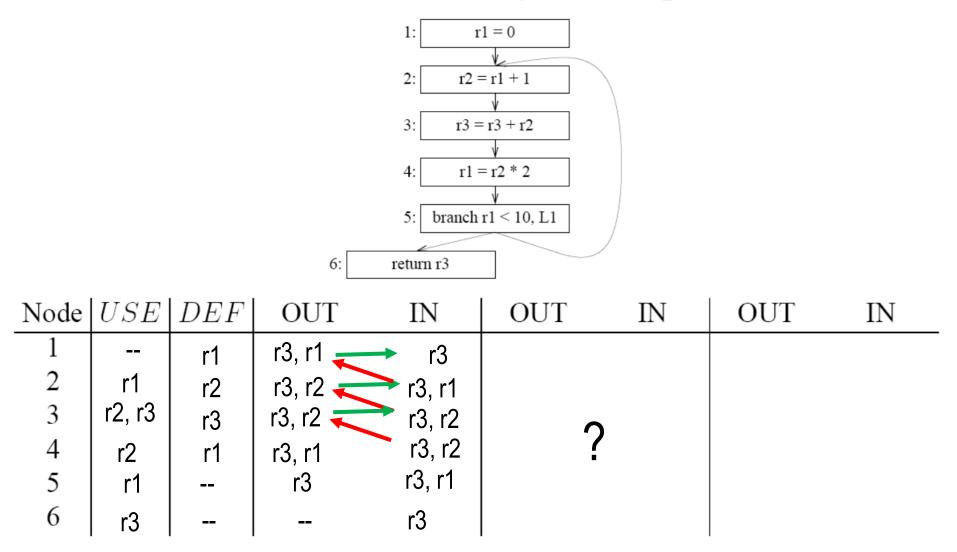
$$OUT[n] = \bigcup_{s \in SUCC[n]} IN[s]$$
$$IN[n] = USE[n] \cup (OUT[n] - DEF[n])$$

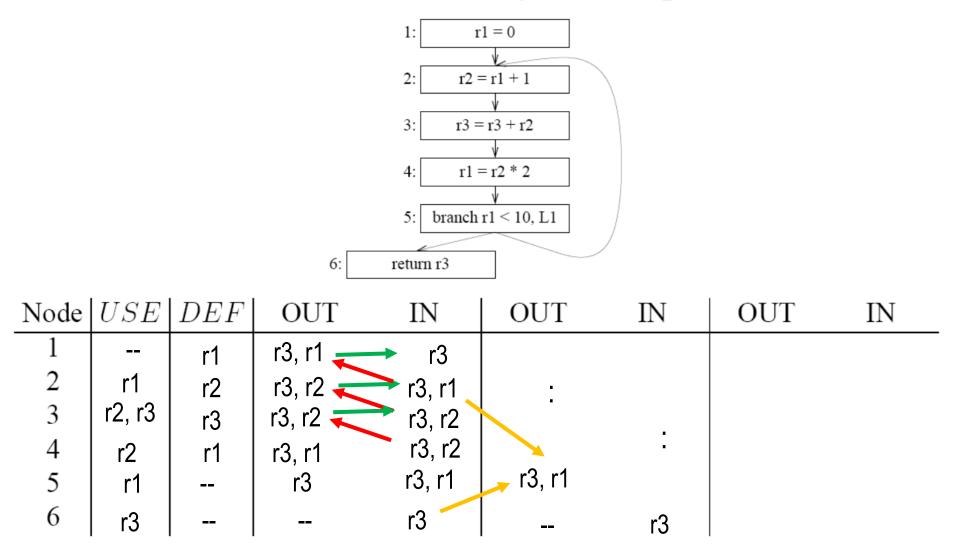
Remember generic equations: $\begin{array}{l} OUT[n] = \lor_{s \in SUCC[n]} IN[s] \\ IN[n] = f\left(A, B, OUT\right) \end{array}$











Live Variable Application 1: Register Allocation

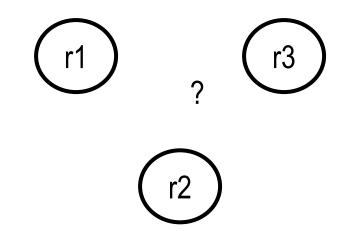
Register Allocation:

- 1. Perform live variable analysis.
- 2. Build interference graph.
- 3. Color interference graph with real registers.

- Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, ..., b_k\}$, then add interference edges: $\langle a, b_1 \rangle$, $\langle a, b_2 \rangle$, $\langle a, b_k \rangle$

Interference Graph For Example: Node DEF OUT IN

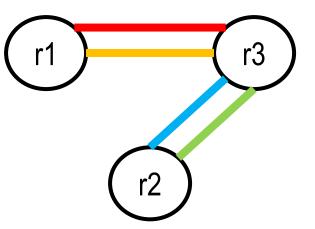
r1,r3 r3
r2,r3 r1,r3
r2,r3 r2,r3
r1,r3 r2,r3
r1, r3 r1,r3
r3



- Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, ..., b_k\}$, then add interference edges: $\langle a, b_1 \rangle, \langle a, b_2 \rangle, \langle a, b_k \rangle$

Interference Graph For Example: Node DFF OUT IN

3
3
3
3
•



Virtual registers r1 and r2 may be mapped to same real registers.

Live Variable Application 2: Dead Code Elimination

• Given statement s of the form

r1 = r2 + r3, r1 = M[r2], or r1 = r2

If r1 is *not* live at the end of *s*, then *s* is *dead*

- Dead statements can be deleted.
- Given statement s of the form

 $r1 = call FUN_NAME, M[r1] = r2$

Even if r1 is not live at the end of s, it is not dead.

Example:

$$r1 = r2 + 1$$

 $r2 = r2 + 2$

r1 = r2 + 3

M[r1] = r2

Live Variable Application 2: Dead Code Elimination

• Given statement s of the form

r1 = r2 + r3, r1 = M[r2], or r1 = r2

If r1 is *not* live at the end of s, then s is *dead*

- Dead statements can be deleted. This may lead to further optimization opportunities, as uses of variables in s
- Given statement s of the form disappear. → repeat all / some analysis / optimization passes!
 r1 = call FUN_NAME, M[r1] = r2

Even if r1 is not live at the end of s, it is not dead.

Example:

$$r1 = r2 + 1$$

r2 = r2 + 2

r1 = r2 + 3

M[r1] = r2

Determines whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- unambiguous instruction explicitly defines register t.
- ambiguous instruction may or may not define register t.
 - Global variables in a function call.
 - No ambiguous definitions in tiger since all globals are stored in memory.
- Definition of d (of t) reaches statement u if a path of CFG edges exists from d to u that does <u>not</u> pass through an unambiguous definition of t.
- \bullet One unambiguous and many ambiguous definitions of t may reach u on a single path.

Reaching Definition Analysis

Reaching Definition Analysis Equation:

- Set definition (A[n]): GEN[n] the set of *definition id's* that n creates.
- Set definition (B[n]): KILL[n] the set of *definition id's* that n kills.

- defs(t) - set of all *definition id's* of register t. (details on next slide)

- Transfer function (f(A, B, IN)): $GEN[n] \cup (IN[n] KILL[n])$
- Confluence operator (\lor): \cup
- Direction: FORWARD

 $IN[n] = \bigcup_{p \in PRED[n]} OUT[p]$ $OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$

Reaching definitions: definition-ID's

1. give each definition point a label ("definition ID") d:

d: t ← b op c d: t ← M[b] d: t ← f(a_1, ..., a_n)

- associate each variable t with a set of labels: defs(t) = the labels d associated with a def of t
- 3. Consider the effects of instruction forms on gen/kill

Statement s	Gen[s]	Kill[s]
d: t <- b op c	{d}	$defs(t) - {d}$
d: t <- M[b]	{d}	$defs(t) - \{d\}$
M[a] <- b	{}	{}
if a relop b goto l1 else goto L2	{}	{}
Goto L	{}	{}
L:	{}	{}
f(a_1,, a_n)	{}	{}
d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}

Reaching Defs: Example		Statement s	Gen[s]	Kill[s]
		d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5		d: t <- M[b]	{d}	$defs(t) - \{d\}$
		M[a] <- b	{}	{}
2: c <- 1		if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a	goto L2	Goto L	{}	{}
		L:	{}	{}
6: L2: a <- c-a 4: c <- c+c		f(a_1,, a_n)	{}	{}
		d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto				

F

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1								
2								
3								
4								
5								
6								
7								

defs(a) = ? defs(c) = ?

Reaching Defs: Example		Statement s	Gen[s]	Kill[s]
		d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5		d: t <- M[b]	{d}	$defs(t) - \{d\}$
		M[a] <- b	{}	{}
2: c <- 1		if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a	goto L2	Goto L	{}	{}
		L:	{}	{}
6: L2: a <- c-a 4: c <- c+c		f(a_1,, a_n)	{}	{}
		d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto				

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1								
2								
3								
4	2							
5								
6								
7								

defs(a) = $\{1, 6\}$ defs(c) = $\{2, 4, 7\}$

Reaching Defs: Example	Statement s	Gen[s]	Kill[s]
	d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5	d: t <- M[b]	{d}	$defs(t) - {d}$
	M[a] <- b	{}	{}
2: c <- 1	if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a goto L2	Goto L	{}	{}
	L:	{}	{}
6: L2: a <- c-a 4: c <- c+c	f(a_1,, a_n)	{}	{}
	d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto L1			

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1	1							
2	2							
3								
4	4	2						
5		•						
6	6							
7	7							

defs(a) = $\{1, 6\}$ defs(c) = $\{2, 4, 7\}$

Reaching Defs: Example		Statement s	Gen[s]	Kill[s]
		d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5		d: t <- M[b]	{d}	$defs(t) - \{d\}$
		M[a] <- b	{}	{}
2: c <- 1		if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a	goto L2	Goto L	{}	{}
		L:	{}	{}
6: L2: a <- c-a 4: c <- c+c		f(a_1,, a_n)	{}	{}
		d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto				

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1	1	<mark>6</mark> ←	- defs(a)-{1}					
2	2	4, 7 🗲	$-$ defs(c)-{2}					
3								
4	4	2, 7 🗲	- defs(c)-{4}					
5								
6	6	1←	- defs(a)-{6}					
7	7	2, 4 🗲	- defs(c)-{7}					

defs(a) = $\{1, 6\}$ defs(c) = $\{2, 4, 7\}$

Reaching Defs: Example		Statement s	Gen[s]	Kill[s]
		d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5		d: t <- M[b]	{d}	$defs(t) - \{d\}$
		M[a] <- b	{}	{}
2: c <- 1		if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a g	oto L2	Goto L	{}	{}
		L:	{}	{}
6: L2: a <- c-a 4: c <- c	;+C /	f(a_1,, a_n)	{}	{}
		d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto				

=

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT	
1	1	6		\rightarrow					
2	2	4, 7							
3									
4	4	2, 7		2					
5									
6	6	1							
7	7	2, 4							
Direction: FORWARD,					$IN[n] = \bigcup_{p \in PRED[n]} OUT[p]$				
			initially {	•	OUT[n]] = GEN[n]	$\cup \left(IN[n] \right.$	-KILL[n])	

Reaching Defs: Example	Statement s	Gen[s]	Kill[s]
	d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5	d: t <- M[b]	{d}	$defs(t) - {d}$
	M[a] <- b	{}	{}
2: c <- 1	if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a goto L2	Goto L	{}	{}
	L:	{}	{}
6: L2: a <- c-a 4: c <- c+c	f(a_1,, a_n)	{}	{}
	d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto L1			

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1	1	6	{ }	{1}				
2	2	4, 7	{	{1, 2}				
3								
4	4	2, 7						
5								
6 7	6	1						
7	7	1 2, 4						
						$IN[n] = \cup_{p \in \mathbb{N}}$	PRED[n]Ol	UT[p]

 $OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$

Reaching Defs: Example	Statement s	Gen[s]	Kill[s]
	d: t <- b op c	{d}	$defs(t) - {d}$
1: a <- 5	d: t <- M[b]	{d}	$defs(t) - {d}$
	M[a] <- b	{}	{}
2: c <- 1	if a relop b goto l1 else goto L2	{}	{}
3: L1: if c > a goto L2	Goto L	{}	{}
	L:	{}	{}
6: L2: a <- c-a 4: c <- c+c	f(a_1,, a_n)	{}	{}
	d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto L1			

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT	
1	1	6	{ }	{1}					
2	2	4, 7	{1}	{1, 2}					
3			{1,2}	{1, 2}					
4	4	2, 7	{1,2}	{1, 4}					
5									
6	6	1							
7	7	2, 4							
	$IN[n] = \cup_{p \in PRED[n]} OUT[p]$								

 $OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$

Reaching Defs: Example	Statement s	Gen[s]	Kill[s]
	— d: t <- b op c	{d}	$defs(t) - {d} =$
1: a <- 5	d: t <- M[b]	{d}	$defs(t) - {d}$
	M[a] <- b	{}	{}
2: c <- 1	if a relop b goto l1 else goto L2	{}	8
3: L1: if c > a goto L2	Goto L	{}	{}
	L:	{}	{}
6: L2: a <- c-a 4: c <- c+c	f(a_1,, a_n)	{}	{}
	d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0 5: goto L1			

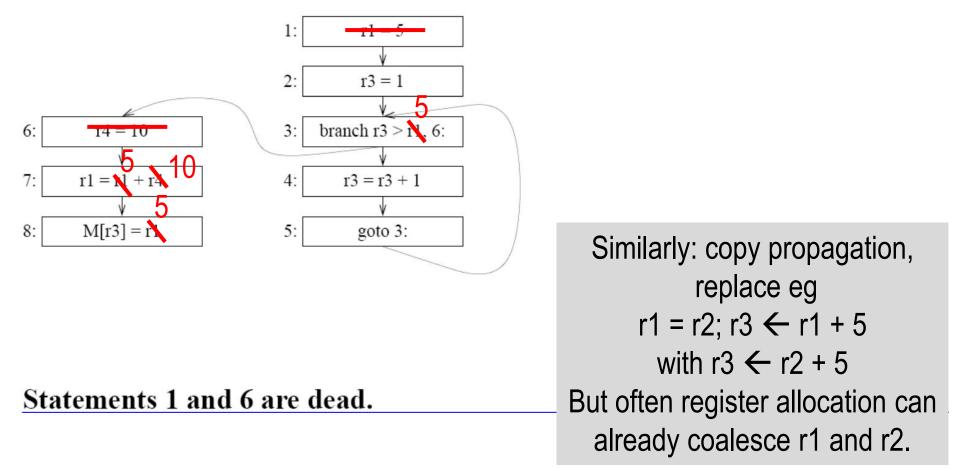
Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1	1	6	{ }	{1}				
2	2	4, 7	{1}	{1, 2}				
3			{1}	{ 1, 2 }				
4	4	2, 7	{1,2}	{1, 4}				
5			{1,4}	{1, 4}				
6	6	1	{1,2} ×	{2,6}				
7	7	2, 4	{2,6}	{6,7}				
						$IN[n] = \cup_{p \in \mathcal{I}}$	PRED[n]Ol	UT[p]
					OUT[n]] = GEN[n]	$\cup \left(IN[n] \right.$	-KILL[n])

Reaching Defs	Statement s	Gen[s]	Kill[s]	
9		d: t <- b op c	{d}	$defs(t) - {d}$
1: a <	<- 5	d: t <- M[b]	{d}	$defs(t) - \{d\}$
		M[a] <- b	{}	{}
2: c <		if a relop b goto l1 else goto L2	{}	{}
3: L1	: if c > a goto L2	Goto L	{}	{}
		L:	{}	{}
6: L2: a <- c-a	4: c <- c+c	f(a_1,, a_n)	{}	{}
		d: t <- f(a_1,, a_n)	{d}	defs(t)-{d}
7: c <- 0	5: goto L1			

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT		
1	1	6	{ }	{1}	{ }	{1}				
2	2	4, 7	{1}	{1, 2}	{1}	{1, 2}				
3			{1,2}	{1, 2}	{1,2,4}	{1, 2,4}				
4	4	2, 7	{1,2}	{1, 4}	{1,2,4}	{1, 4}	No change			
5			{1,4}	{1, 4}	{1,4}	{1, 4}		C		
6	6	1	{1,2}	{2,6}	{1,2,4}	{2,4,6}				
7	7	2, 4	{2,6}	{6,7}	{2,4,6}	{6,7}				
$IN[n] = \cup_{p \in PRED[n]} OUT[p]$										
$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$										

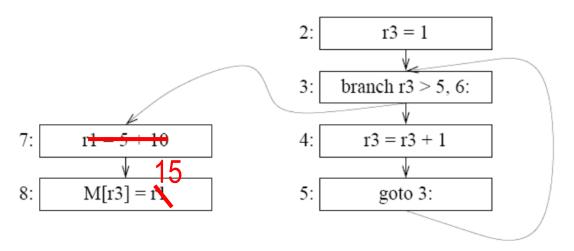
Reaching Definition Application 1: Constant Propagation

- Given Statement d: a = c where c is constant
- Given Statement u: t = a op b
- If statement d reach u and no other definition of a reaches u, then replace u b;
 c op b.



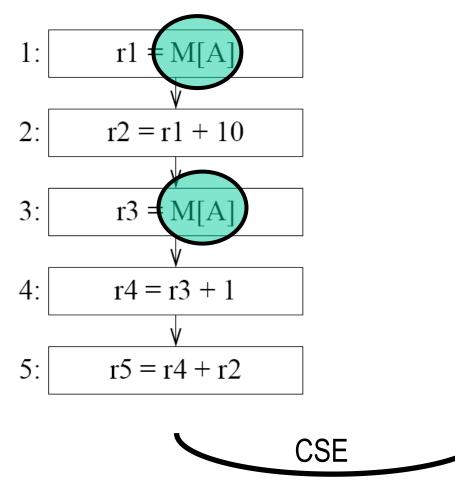
Reaching Definition Application 2: Constant Folding

- Given Statement d: t = a op b
- If a and b are constant, compute c as a op b, replace d by t = c



Common Subexpression Elimination

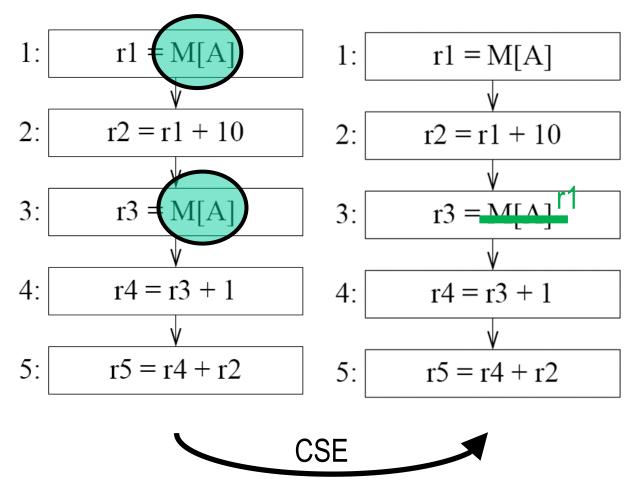
If $x \circ p$ y is computed multiple times, *common subexpression elimination* (CSE) attempts to eliminate some of the duplicate computations.



Need to track expression propagation \rightarrow available expression analysis

Common Subexpression Elimination

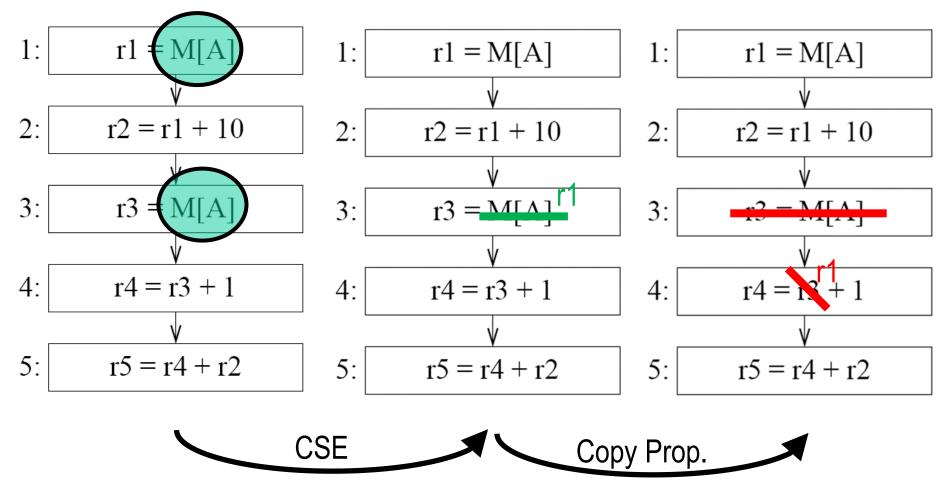
If $x \circ p$ y is computed multiple times, *common subexpression elimination* (CSE) attempts to eliminate some of the duplicate computations.



Need to track expression propagation \rightarrow available expression analysis

Common Subexpression Elimination

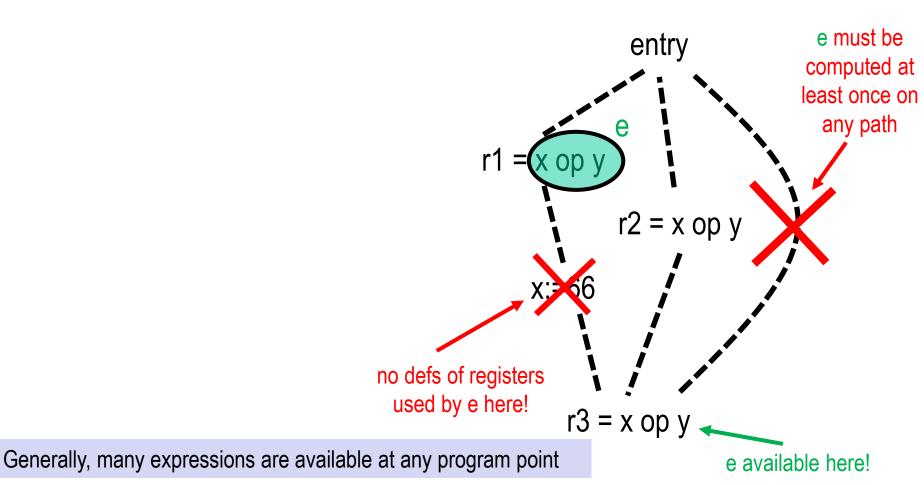
If $x \circ p$ y is computed multiple times, *common subexpression elimination* (CSE) attempts to eliminate some of the duplicate computations.



Need to track expression propagation \rightarrow available expression analysis

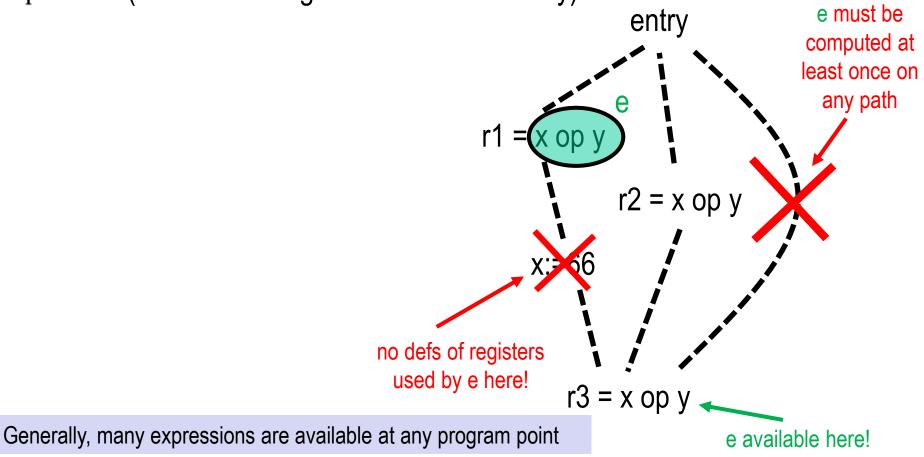
Definitions

• Expression x op y is *available* at CFG node n if, on every path from CFG entry node to n, x op y is computed at least once, and neither x nor y are defined since last occurrence of x op y on path.



Definitions

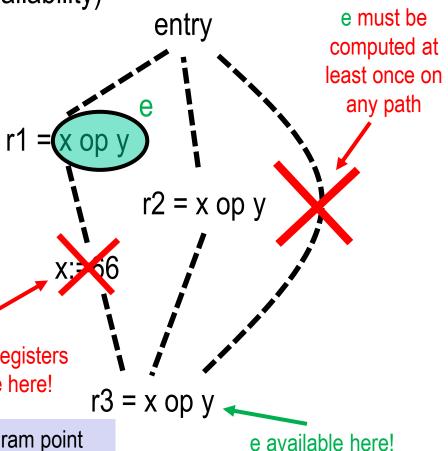
- Expression x op y is *available* at CFG node n if, on every path from CFG entry node to n, x op y is computed at least once, and neither x nor y are defined since last occurrence of x op y on path.
- Can compute set of expressions available at each statement using system of dataflow equations. (ie statements generate/kill availability)



Definitions

- Expression x op y is *available* at CFG node n if, on every path from CFG entry node to n, x op y is computed at least once, and neither x nor y are defined since last occurrence of x op y on path.
- Can compute set of expressions available at each statement using system of dataflow equations. (ie statements generate/kill availability)
- Statement r1 = M[r2]:
 - generates expression M[r2].
 - kills all expressions containing r1.
- Statement r1 = r2 + r3:
 - generates expression r2 + r3.
 - kills all expressions containing r1.
- Statement M[r2] = e
 - generates no expression (we do **availability in register** here) no defs of registers
 - kills any M[..] expression, ie loads used by e here!

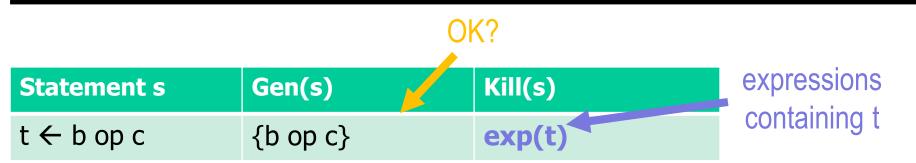
Generally, many expressions are available at any program point



Iterative Dataflow Analysis Framework (forward)

- Two set definitions A[n] and B[n]
- A transfer function f(A, B, IN/OUT)
- $IN[n] = \lor_{p \in PRED[n]} OUT[p]$ OUT[n] = f(A, B)

– A confluence operator - \lor .



Iterative Dataflow Analysis Framework (forward)

 $IN[n] = \lor_{p \in PRED[n]} OUT[p]$ OUT[n] = f(A, B)

- Two set definitions A[n] and B[n]
- A transfer function f(A, B, IN/OUT)
- A confluence operator \lor .

to deal with t = b or t = c

Statement s	Gen(s)	Kill(s)	expressions
t ← b op c	{b op c} - kill(s)	exp(t)	containing t
$t \leftarrow M[b]$	${M[b]} - kill(s)$	exp(t)	_ expressions of
M[a] ← b	{}	"fetches"	the form M[_]
if a rop b goto L1 else goto L2	{}	{}	
Goto L	{}	{}	
L:	{}	{}	
f(a ₁ ,,a _n)	?	?	
$t \leftarrow f(a_1,, a_n)$?	?	

Iterative Dataflow Analysis Framework (forward)

 $IN[n] = \lor_{p \in PRED[n]} OUT[p]$ OUT[n] = f(A, B)

- Two set definitions A[n] and B[n]
- A transfer function f(A, B, IN/OUT)
- A confluence operator \lor .

to deal with t = b or t = c

Statement s	Gen(s)	Kill(s)	expressions
t ← b op c	{b op c} - kill(s)	exp(t)	containing t
$t \leftarrow M[b]$	${M[b]} - kill(s)$	exp(t)	_ expressions of
M[a] ← b	{}	"fetches"	the form M[_]
if a rop b goto L1 else goto L2	{}	{}	
Goto L	{}	{}	
L:	{}	{}	
f(a ₁ ,,a _n)	{}	"fetches"	
$t \leftarrow f(a_1,, a_n)$	{}	$exp(t) \cup "fetches"$	

- exp(t) set of all expressions containing t.
- Set definition (A[n]): GEN[n] the set of all expressions generated by n.
- Set definition (B[n]): KILL[n] the set of all expressions that n kills exp(n).
- Transfer function (f(A, B, IN/OUT)): $GEN[n] \cup (IN[n] KILL[n])$
- Confluence operator (\lor): \cap
 - only expressions that are out-available at **all** predecessors of n are in-available at n
 - fact that sets shrink triggers initialization of all sets to U (set of all expressions), except for IN[entry] = {}
- Direction: FORWARD

$$IN[n] = \bigcap_{p \in PRED[n]} OUT[p]$$
$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

Statement s	Gen(s)	Kill(s)		Step 1:	fill in Ki	ll[n]
t ← b op c	{b op c} - kill(s)	exp(t)				
t ← M[b]	${M[b]} - kill(s)$	exp(t)	Node n	Gen[n]	Kill[n]	
$M[a] \leftarrow b$	{}	"fetches"				
if a rop b goto L1 else goto L2	{}	{}	1 2			
Goto L	{}	{}				
L:	{}	{}	3			
f(a ₁ ,,a _n)	{}	"fetches"	4			
$t \leftarrow f(a_1,, a_n)$	{}	$exp(t) \cup "fetches"$	5			
	1: r1 =	M[A]	6			
	2	V (ID)				
	2: r2 =	M[B]	7			
	3: r3 =	$\frac{\Psi}{r1+r2}$	8			
		↓	9			
	4: r4 =	r3 + r1				
		V			no singleto	n registers (r4 etc)
	5: brancl	$r_1 r_3 > r_2$			no Boole	an exprs (r3>r2)
6: r1	= r1 + 12		Univ	verse \mathbf{U} of	expressio	ons:
0. 11	-11+12	ev	xp(r5) —→	M[r5], M[/		
7: r4	=r1 + r2		· · ·		10 r 2 r 1	
		V		r1+r2, r1+	12, 13711	"fetches"
	8: r5 =	r1 + r2			/ \	
	9: M[r:	\bigvee 5] = r4	ex	p(r2) exp	o(r1)	exp(r3)

Statement s	Gen(s)	Kill(s)		Step 2	fill in Gen[n]
t ← b op c	{b op c} - kill(s)	exp(t)			
t ← M[b]	${M[b]} - kill(s)$	exp(t)	Node r	Gen[n]	Kill[n]
M[a] ← b	{}	"fetches"	1		r1+r2, r1+ 12, r3+r1
if a rop b goto L1 else goto L2	{}	{}	2		r1+r2
Goto L	{}	{}			
L:	{}	{}	3		r3+r1
f(a ₁ ,,a _n)	{}	"fetches"	4		-
$t \leftarrow f(a_1,, a_n)$	{}	$exp(t) \cup "fetches"$	5		-
	1: r1 =	M[A]	6		r1+r2, r1+ 12, r3+r1
	2: r2 =	γ M[B]	7		-
	3: r3 = r	$\frac{1}{r1+r2}$	8		M[r5]
	4: r4 = :	$\frac{1}{1}$ r3 + r1	9		M[r5], M[A], M[B]
		V			no singleton registers (r4 etc)
	5: branch	$r_1 r_3 > r_2$			no Boolean exprs (r3>r2)
			U	niverse \mathbf{U} of	expressions:
6: r1 ·	= r1 + 12	ex	p(r5) —	→ M[r5], M[
7: r4	= r1 + r2				
		V		11112,111	12, r3+r1 "fetches"
	8: r5 = r	r1 + r2			
	9: M[r:	ψ 5] = r4	(exp(r2) exp	o(r1) exp(r3)

Statement s	Gen(s)	Kill(s)	Exa	mple	
t ← b op c	{b op c} - kill(s)	exp(t)			
t ← M[b]	${M[b]} - kill(s)$	exp(t)	Node n	Gen[n]	Kill[n]
M[a] ← b	{}	"fetches"	1	M[A]	r1+r2, r1+ 12, r3+r1
if a rop b goto L1 else goto L2	{}	{}	2	M[A] M[B]	r1+r2
Goto L	{}	{}			
L:	{}	{}	3	r1+r2	r3+r1
f(a ₁ ,,a _n)	{}	"fetches"	4	r3+r1	-
$t \leftarrow f(a_1,, a_n)$	{}	exp(t) ∪ "fetches"	5	-	-
	1: r1 =	M[A]	6	-	r1+r2, r1+ 12, r3+r1
	2: r2 =	M[B]	7	r1+r2	-
	3: r3 =	$\frac{\Psi}{r1 + r2}$	8	r1+r2	M[r5]
	4: r4 =	$\frac{1}{r^3 + r^1}$	9	-	M[r5], M[A], M[B]
		V			no singleton registers (r4 etc)
	5: brancl	$r_{1}r_{3} > r_{2}$			no Boolean exprs (r3>r2)
			Univ	verse U of	expressions:
6: r1	= r1 + 12				
7: *4	$\frac{1}{1}$	ex	$p(r5) \longrightarrow$	M[r5], M[A	
7: r4	= r1 + r2		1	r1+r2, r1+ ′	12, r3+r1 "fetches"
	8: r5 =	r1 + r2			
	9: M[r:	$\sqrt[4]{5]} = r4$	exp	o(r2) exp	(r1) exp(r3)

Example: hash expressions

Gen[n]	Kill[I	າ]	
M[A]	r1+r	2, r1+ 12,	r3+r1
M[B]	r1+r	2	
r1+r2	r3+r	1	
r3+r1	-		
-	-		
-	r1+r	2, r1+ 12,	r3+r1
r1+r2	-		
r1+r2	M[r5	5]	
-	M[r5	<mark>], M[A], M</mark>	[B]
		r1+r2	1
		r1+12	2
		r3+r1	3
		M[r5]	4
		M[A]	5
		M[B]	6

n

n	Gen[n]	Kill[n]
1	5	1, 2, 3
2	6	1
3	1	3
4	3	-
5	-	-
6	-	1, 2, 3
7	1	-
8	1	4
9	-	4, 5, 6

 $IN[n] = \bigcap_{p \in PRED[n]} OUT[p]$ $OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$

Step 3: DF iteration

FORWARD

n	Gen[n]	Kill[n]	In	Out	In[n]	Out[n]	
1	5	1, 2, 3	{}	U		>	
2	6	1	U	U			
3	1	3	U	U		→	
4	3	-	U	U			
5	-	-	U	U			$6: r1 = r1 + \frac{1}{\sqrt{7}}$ $7: r4 = r1 + \frac{1}{\sqrt{7}}$
6	-	1, 2, 3	U	U			
7	1	-	U	U			
8	1	4	U	U	4		
9	-	4, 5, 6	U	U			
Ţ	U = {1	,, 6}					

 $IN[n] = \bigcap_{p \in PRED[n]} OUT[p]$ $OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$

Example

FORWARD

n	Gen[n]	Kill[n]	In	Out	In[n]	Out[n]	
1	5	1, 2, 3	{}	U	{}	5	1: r1 = M[A]
2	6	1	U	U	5	5,6	$2: \boxed{r2 = M[B]}$
3	1	3	U	U	5, 6	1, 5, 6	$3: \boxed{r3 = r1 + r2}$ $4: \boxed{r4 = r3 + r1}$
4	3	-	U	U	1, 5, 6	1, 3, 5, 6	5: branch r3 > r
5	-	-	U	U	1, 3, 5, 6	1, 3, 5, 6	6: rl = rl + 12 V $7: r4 = rl + r2$
6	-	1, 2, 3	U	U	1, 3, 5, 6	5, 0	8: r5 = r1 + r2
7	1	-	U	U	5, 6	1, 5, 6	9: M[r5] = r4
8	1	4	U	U	1, 5, 6 🦌	1, 5, 6	
9	-	4, 5, 6	U	U	1, 5, 6	1	
	$\mathbf{U} = \{1, 2\}$	I,, 6}					

Example

r1+r2

r1+12

r3+r1

M[r5]

M[A]

M[B]

1

2

3

4

5

6

6:

7:

1: $r1 = M[A]$	
 M[A]	
2: $r2 = M[B]$	
M[A], M[B]	
3: $r3 = r1 + r2$	
r1+r2,↓M[A], M[B]	
4: $r4 = r3 + r1$	
r1+r2, r3+r1,↓M[A], M[B]	
5: branch $r3 > r2$	
 r1+r2, r3+r1, M[A], M[B]	
r1 = r1 + 12	
 √ M[A], M[B]	
r4 = r1 + r2	
r1+r2, M[A], M[B] r1+r2, M[A], M[B]	
8: $r5 = r1 + r2$	
r1+r2,↓M[A], M[B]	
9: $M[r5] = r4$	
r1+r2	

In[n]	Out[n]
{}	5
5	5, 6
5, 6	1, 5, 6
1, 5, 6	1, 3, 5, 6
1, 3, 5, 6	1, 3, 5, 6
1, 3, 5, 6	5, 6
5, 6	1, 5, 6
1, 5, 6	1, 5, 6
1, 5, 6	1
	<pre>{} 5 5, 6 1, 5, 6 1, 3, 5, 6 1, 5, 6 1, 5, 6</pre>

Common Subexpression Elimination (CSE)

Given statement s: t = x op y:

If expression x op y is available at beginning of node s then:

1. starting from node *s*, traverse CFG edges backwards to find last occurrence of x op y on each path from entry node to *s*.

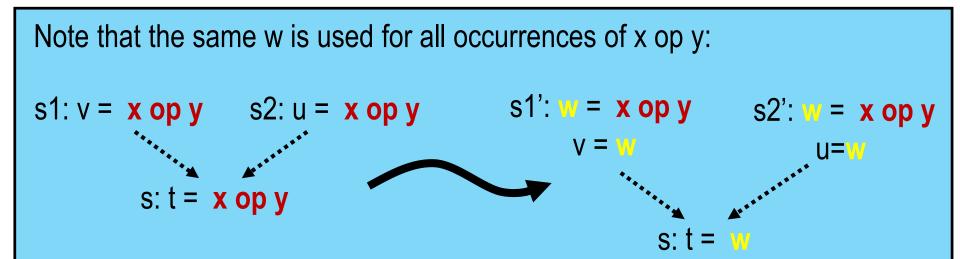
Can be seen as further analysis: "reaching expressions"

- 2. create new temporary w.
- 3. for each statement s': v = x op y found in (1), replace s' by:

$$w = x \circ p$$

$$V = W$$

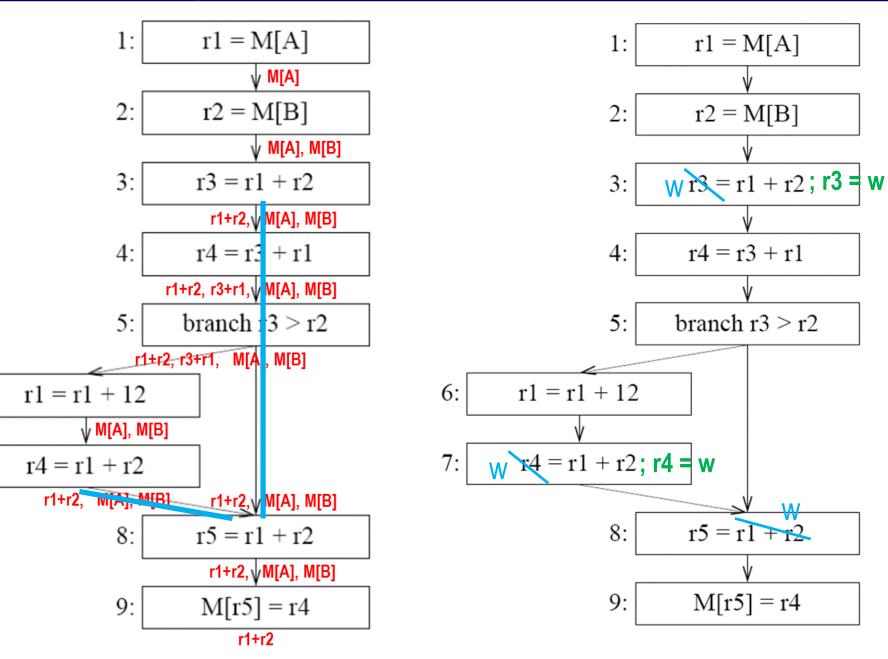
4. replace statement s by: t = w



CSE Example

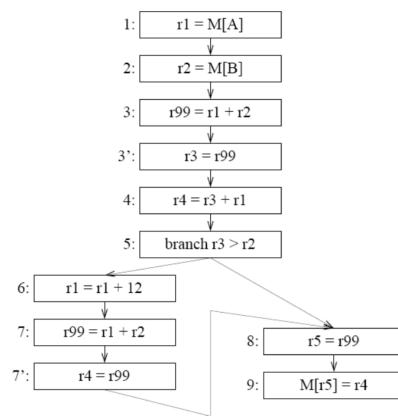
6:

7:



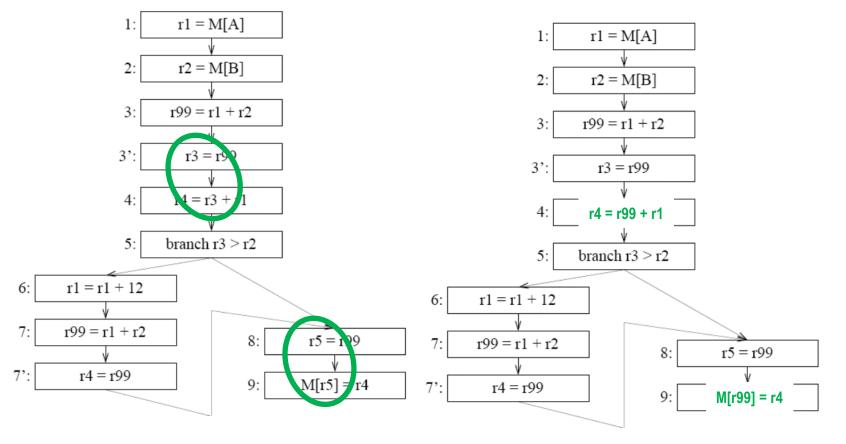
Copy Propagation

- Given statement d: a = z (a and z are both register temps) → d is a copy statement.
- Given statement u: t = a op b.
- If d reaches u, no other definition of a reaches u, and no definition of z exists on any path from d to u, then replace u by: t = z op b.



Copy Propagation

- Given statement d: a = z (a and z are both register temps) → d is a copy statement.
- Given statement u: t = a op b.
- If d reaches u, no other definition of a reaches u, and no definition of z exists on any path from d to u, then replace u by: t = z op b.



Sets

- Sets have been used in all the dataflow and control flow analyses presented.
- There are at least 3 representations which can be used:
 - Bit-Arrays:
 - * Each *potential* member is stored in a bit of some array.
 - * Insertion, Member is O(1).
 - * Assuming set size of N and word size of W Union (OR) and Intersection (AND) is O(N/W).
 - Sorted Lists/Trees:
 - * Each member is stored in a list element.
 - * Insertion, Member, Union, Intersection is O(size). (Insertion, Member is $O(\log_2 size)$ in trees.)
 - * Better for sparse sets than bit-arrays.
 - Hybrids: Trees with bit-arrays
 - * Use Tree to hold elements containing bit-arrays.
 - * Union, Intersection is O(size/W). Insertion, Member is $O(\log_2 size/W)$.

Basic Block Level Analysis

- To improve performance of dataflow, process at basic block level.
 - Represent the entire basic block by a single *super-instruction* which has any number of destinations and sources.
 - Run dataflow at basic block level.
 - Expand result to the instruction level.

• Example:

- Example:
 - p: r1 = r2 + r3 -> r1, r2 = r2, r3 n: r2 = r1
- For reaching definitions:

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

• Example:

p: r1 = r2 + r3 -> r1, r2 = r2, r3 n: r2 = r1

• For reaching definitions:

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

But IN[n] = OUT[p]:

 $OUT[n] = GEN[n] \cup ((GEN[p] \cup (IN[p] - KILL[p])) - KILL[n])$

Which (clearly) yields:

 $\begin{array}{l} OUT[n] = GEN[n] \cup (GEN[p] - KILL[n]) \cup (IN[p] - (KILL[p] \cup KILL[n])) \\ \\ \textbf{So: } \\ \textbf{GEN[pn]} \\ GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n]) \\ \\ GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n]) \\ \\ KILL[pn] = KILL[p] \cup KILL[n] \end{array}$

• Can we do this at the loop or general region level?

Definition

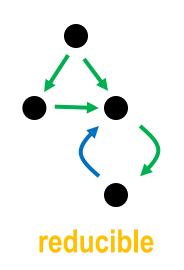
- A flow graph is reducible iff each edge exists in exactly one class:
 - 1. Forward edges (forms an acyclic graph where every node is reachable from start node)
 - 2. Back edges (head dominates tail)

Algorithm:

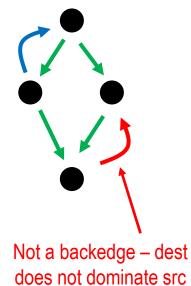
- 1. Remove all backedges
- 2. Check for cycles:
 - Cycles: Irreducible.
 - No Cycles: Reducible.

Think:

• All loop entry arcs point to header.



irreducible



Reducible Flow Graphs – Structured Programs

Motivation:

- Structured programs are always reducible programs.
- Reducible programs are not always structured programs.
- Exploit the structured or reducible property in dataflow analysis.

Structures:

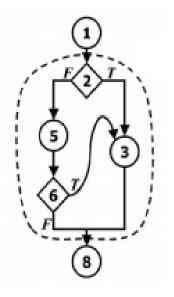
- Lists of instructions
- Conditionals/Hammocks
- While Loops (no breaks)

Method:

- Represent structures by a single *super-instruction* which has any number of destinations and sources.
- Run dataflow at structure level.
- Expand result to the instruction level.

Subgraph H of CFG, and nodes u ∈ H, v ∉ H such that

- all edges into H go to u,
- all edges out of H go to v



Reaching Definitions for Structured Programs

Remember:

- Set definition (A[n]): GEN[n] the set of *definition id's* that n creates.
- Set definition (B[n]): KILL[n] the set of *definition id's* that n kills.

– defs(t) - set of all definition id's of register t.

• Lists of instructions - Basic Blocks!

$$GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n])$$
$$KILL[pn] = KILL[p] \cup KILL[n]$$

Conditionals/Hammocks

р

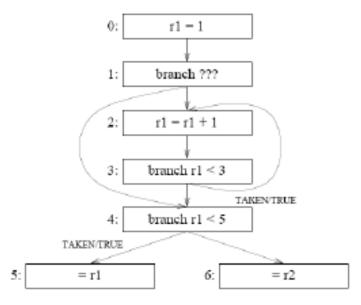
$$GEN[lr] = GEN[l] \cup GEN[r]$$
$$KILL[lr] = KILL[l] \cap KILL[r]$$

• While Loops

$$GEN[loop] = GEN[l]$$
$$KILL[loop] = KILL[l]$$

Try this on an irreducible flow graph...

Conservative Approximations



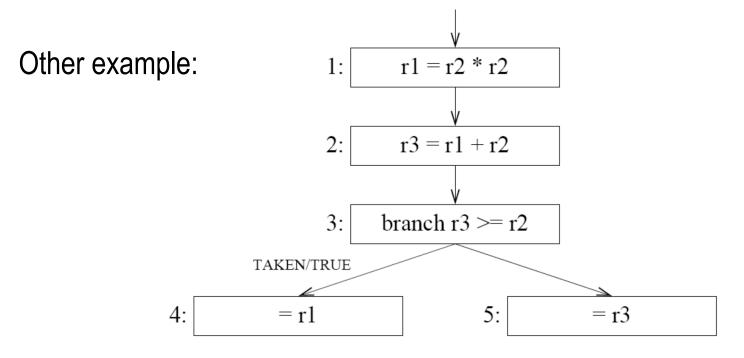
- Register r2 looks live by our live variable analysis, but is not.
- In general, today's compilers do not determine exactly how execution will proceed.
- Inaccuracy must lead to conservative approximations.
 - Optimizations must only be applied when proven safe.
 - Conservatism may not always compute best results.
- MCI in ML uses the terms statically live and dynamically live.

Limitation of Dataflow Analysis

There are more sophisticated program analyses that

- can (conservatively) approximate the ranges/sets of "possible values"
- fit into a general framework of transfer functions and inference by iterated updates until a fixed point is reached: "<u>abstract interpretation</u>"
- are very useful for eliminating dead branches, showing that array accesses are always within range,...

But eventually, they run into the same theoretical limitations

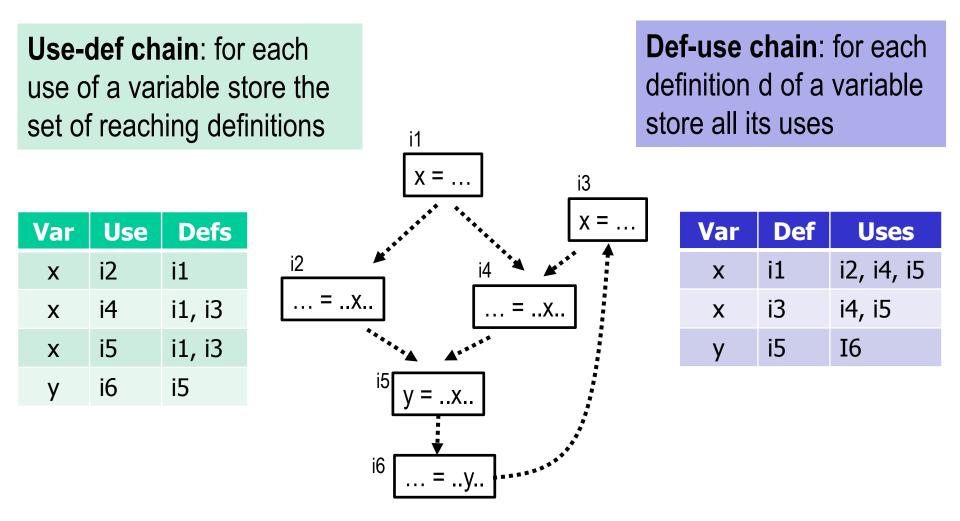


Implementation issues

- 1. Representation of data flow info (sets of variables, expressions, labels, ...)
 - linked lists, maybe ordered by variable name
 - suitable for sparse analyses (typically, only few variables are live at a program point ...)
 - bit-vectors of length N, if set is of size < 2^N
 - union, intersection implemented by bit-wise OR/AND
 - suitable for dense analyses
- 2. Speeding up iterations: worklist algorithms
 - instead of traversing all nodes in each iteration, just revisit those nodes for which IN/OUT might change
 - FORWARD: after visiting a node, if OUT[n] was modified, ensure that all successors of n are in the queue (insert if necessary)
 - BACKWARD: similarly, add predecessors of n if IN[n] has changed
- 3. "single-information-at-a-time" versus "exhaustive" information:
 - "is the (costly-to-compute) expression e available here" versus "give me all available expressions, at all program points"

Use-def chains, def-use chains

- many optimizations exploit def-use relationship
- avoid recalculation by introducing a data structure



Generalization: static single-assignment (SSA) form – see future lecture.