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Analysis and Transformation

analysis spans multiple procedures

single-procedure-analysis: intra-procedural



Dataflow Analysis Motivation



Dataflow Analysis Motivation

Assuming only r5 is live-out at instruction 4...

r2

r3

r4



Dataflow Analysis



Iterative Dataflow Analysis Framework



Definitions



Iterative Dataflow Analysis Framework



Definitions for Liveness Analysis



Definitions for Liveness Analysis

Remember generic equations:
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Live Variable Application 1: Register Allocation



Interference Graph
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Interference Graph

r1 r3
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Live Variable Application 2: Dead Code Elimination

of the form

of the form



Live Variable Application 2: Dead Code Elimination

of the form

of the form

This may lead to further optimization 

opportunities, as uses of variables in s 

disappear.  repeat all / some 

analysis / optimization passes!



Reaching Definition Analysis



Reaching Definition Analysis

(details on next slide)



Reaching definitions: definition-ID’s

1. give each definition point a label (“definition ID”) d:

2. associate each variable t with a set of labels:
defs(t) = the labels d associated with a def of t

3. Consider the effects of instruction forms on gen/kill

d: t      b op c      d: t     M[b]     d: t     f(a_1, …, a_n)

Statement s Gen[s] Kill[s]

d: t <- b op c {d} defs(t) – {d}

d: t <- M[b] {d} defs(t) – {d}

M[a] <- b {} {}

if a relop b goto l1 else 
goto L2

{} {}

Goto L {} {}

L: {} {}

f(a_1, …, a_n) {} {}

d: t <- f(a_1, …, a_n) {d} defs(t)-{d}



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

defs(a) = ? defs(c) = ?



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

defs(a) = {1, 6} defs(c) = {2, 4, 7}

?



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a
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Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

defs(a)-{1}

defs(a) = {1, 6} defs(c) = {2, 4, 7}

defs(c)-{2}

defs(c)-{7}

defs(a)-{6}

defs(c)-{4}

6

4, 7

2, 7

1

2, 4



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

Direction: FORWARD, 

IN/OUT initially {}

?



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

{1,2} {1, 2}

{1,2} {1, 4}



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

{1} {1, 2}

{1,2} {1, 4}

{1,4} {1, 4}

{1,2} {2,6}

{2,6} {6,7}



Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

{1,2} {1, 2}

{1,2} {1, 4}

{1,4} {1, 4}

{1,2} {2,6}

{2,6} {6,7}

{ } {1}
{1} {1, 2}

{1,2,4} {1, 2,4}

{1,2,4} {1, 4}

{1,4} {1, 4}

{1,2,4} {2,4,6}

{2,4,6} {6,7}

No change
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Reaching Definition Application 1: Constant Propagation

c

5

Similarly: copy propagation,

replace eg

r1 = r2; r3  r1 + 5

with r3  r2 + 5

But often register allocation can

already coalesce r1 and r2.

5

5



Reaching Definition Application 2: Constant Folding

15



Common Subexpression Elimination

CSE



Common Subexpression Elimination

r1

CSE



Common Subexpression Elimination

r1

r1

CSE Copy Prop.



Definitions

entry

r1 = x op y

r2 = x op y

r3 = x op y

x:=66

no defs of registers 

used by e here!

e

e must be 

computed at 

least once on 

any path

e available here!Generally, many expressions are available at any program point
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r2 = x op y

r3 = x op y

x:=66

no defs of registers 

used by e here!

e

e must be 

computed at 

least once on 

any path

e available here!

(ie statements generate/kill availability)

Generally, many expressions are available at any program point



Definitions

entry

r1 = x op y

r2 = x op y

r3 = x op y

x:=66

no defs of registers 

used by e here!

e

e must be 

computed at 

least once on 

any path

e available here!

(ie statements generate/kill availability)

Generally, many expressions are available at any program point

• Statement M[r2] = e

- generates no expression (we do

availability in register here)

- kills any M[ .. ] expression, ie loads



Iterative Dataflow Analysis Framework (forward)

Statement s Gen(s) Kill(s)

t  b op c {b op c} exp(t)

expressions 

containing t

OK?



Iterative Dataflow Analysis Framework (forward)

Statement s Gen(s) Kill(s)

t  b op c {b op c} – kill(s) exp(t)

t  M[b] {M[b]} – kill(s) exp(t)

M[a]  b {} “fetches”

if a rop b goto L1 
else goto L2

{} {}

Goto L {} {}

L: {} {}

f(a1,..,an) ? ?

t  f(a1, .., an) ? ?

expressions 

containing t

expressions of 

the form M[ _ ]

to deal with t = b or t = c



Iterative Dataflow Analysis Framework (forward)

Statement s Gen(s) Kill(s)

t  b op c {b op c} – kill(s) exp(t)

t  M[b] {M[b]} – kill(s) exp(t)

M[a]  b {} “fetches”

if a rop b goto L1 
else goto L2

{} {}

Goto L {} {}

L: {} {}

f(a1,..,an) {} “fetches”

t  f(a1, .., an) {} exp(t)     “fetches”

expressions 

containing t

expressions of 

the form M[ _ ]

∩

to deal with t = b or t = c



Available Expression Analysis

• only expressions that are out-available at all predecessors of n are in-available at n

• fact that sets shrink triggers initialization of all sets to U (set of all expressions), 

except for IN[entry] = {}



Step 1: fill in Kill[n]

Node n Gen[n] Kill[n]

1

2

3

4

5

6

7

8

9

Universe U of expressions: 

M[r5], M[A], M[B], 

r1+r2, r1+ 12, r3+r1 “fetches”

exp(r1)exp(r2) exp(r3)

exp(r5)

no singleton registers (r4 etc)

no Boolean exprs (r3>r2)



Step 2: fill in Gen[n]

Node n Gen[n] Kill[n]

1 r1+r2, r1+ 12, r3+r1 

2 r1+r2

3 r3+r1

4 -

5 -

6 r1+r2, r1+ 12, r3+r1 

7 -

8 M[r5]

9 M[r5], M[A], M[B]

Universe U of expressions: 

M[r5], M[A], M[B], 

r1+r2, r1+ 12, r3+r1 “fetches”

exp(r1)exp(r2) exp(r3)

exp(r5)

no singleton registers (r4 etc)

no Boolean exprs (r3>r2)



Example

Node n Gen[n] Kill[n]

1 M[A] r1+r2, r1+ 12, r3+r1 

2 M[B] r1+r2

3 r1+r2 r3+r1

4 r3+r1 -

5 - -

6 - r1+r2, r1+ 12, r3+r1 

7 r1+r2 -

8 r1+r2 M[r5]

9 - M[r5], M[A], M[B]

Universe U of expressions: 

M[r5], M[A], M[B], 

r1+r2, r1+ 12, r3+r1 “fetches”

exp(r1)exp(r2) exp(r3)

exp(r5)

no singleton registers (r4 etc)

no Boolean exprs (r3>r2)



Example: hash expressions

n Gen[n] Kill[n]

1 M[A] r1+r2, r1+ 12, r3+r1 

2 M[B] r1+r2

3 r1+r2 r3+r1

4 r3+r1 -

5 - -

6 - r1+r2, r1+ 12, r3+r1 

7 r1+r2 -

8 r1+r2 M[r5]

9 - M[r5], M[A], M[B]

n Gen[n] Kill[n]

1 5 1, 2, 3 

2 6 1

3 1 3

4 3 -

5 - -

6 - 1, 2, 3

7 1 -

8 1 4

9 - 4, 5, 6

r1+r2 1

r1+12 2

r3+r1 3

M[r5] 4

M[A] 5

M[B] 6



Step 3: DF iteration

FORWARD

U = {1, .., 6}

In Out In[n] Out[n]

{} U

U U

U U

U U

U U

U U

U U

U U

U U

:
:

:



Example

FORWARD

U = {1, .., 6}

In Out In[n] Out[n]

{} U {} 5

U U 5 5,6

U U 5, 6 1, 5, 6

U U 1, 5, 6 1, 3, 5, 6

U U 1, 3, 5, 6 1, 3, 5, 6

U U 1, 3, 5, 6 5, 6

U U 5, 6 1, 5, 6

U U 1, 5, 6 1, 5, 6

U U 1, 5, 6 1



Example

In[n] Out[n]

{} 5

5 5, 6

5, 6 1, 5, 6

1, 5, 6 1, 3, 5, 6

1, 3, 5, 6 1, 3, 5, 6

1, 3, 5, 6 5, 6

5, 6 1, 5, 6

1, 5, 6 1, 5, 6

1, 5, 6 1

M[A]

M[A], M[B]

r1+r2,   M[A], M[B]

r1+r2, r3+r1,   M[A], M[B]

r1+r2, r3+r1,   M[A], M[B]

M[A], M[B]

r1+r2,   M[A], M[B] r1+r2,   M[A], M[B]

r1+r2

r1+r2,   M[A], M[B]

r1+r2 1

r1+12 2

r3+r1 3

M[r5] 4

M[A] 5

M[B] 6



Common Subexpression Elimination (CSE)

Note that the same w is used for all occurrences of x op y:

s1: v =  x op y s2: u =  x op y 

s: t =  x op y 

s1’: w =  x op y 

v = w
s2’: w =  x op y

u=w

s: t =  w

Can be seen as further analysis: “reaching expressions”



CSE Example

w

w

; r3 = w

; r4 = w

w



Copy Propagation



Copy Propagation

r4 = r99 + r1

M[r99] = r4



Sets



Basic Block Level Analysis

defs uses



Basic Block Level Analysis



Basic Block Level Analysis

IN[pn]

=

OUT[pn]

=



Reducible Flow Graphs Revisited

Not a backedge – dest

does not dominate src

reducible

irreducible



Reducible Flow Graphs – Structured Programs

Subgraph H of CFG, and 

nodes u є H, v є H such that

• all edges into H go to u, 

• all edges out of H go to v



Reaching Definitions for Structured Programs

p

n

l r

Remember:



Conservative Approximations



Limitation of Dataflow Analysis

Other example: 

There are more sophisticated program analyses that

• can (conservatively) approximate the ranges/sets of “possible values”

• fit into a general framework of transfer functions and inference by 

iterated updates until a fixed point is reached: “abstract interpretation”

• are very useful for eliminating dead branches, showing that

array accesses are always within range,…

But eventually, they run into the same theoretical limitations



Implementation issues

1. Representation of data flow info (sets of variables, expressions, labels, …)

• linked lists, maybe ordered by variable name

• suitable for sparse analyses (typically, only few variables are live 

at a program point … )

• bit-vectors of length N, if set is of size < 2^N

• union, intersection implemented by bit-wise OR/AND

• suitable for dense analyses

2. Speeding up iterations: worklist algorithms

• instead of traversing all nodes in each iteration, just revisit those nodes 

for which IN/OUT might change

• FORWARD: after visiting a node, if OUT[n] was modified, ensure that 

all successors of n are in the queue (insert if necessary)

• BACKWARD: similarly, add predecessors of n if IN[n] has changed

3. “single-information-at-a-time” versus “exhaustive” information:

• “is the (costly-to-compute) expression e available here” versus “give me 

all available expressions, at all program points”



Use-def chains, def-use chains

• many optimizations exploit def-use relationship 

• avoid recalculation by introducing a data structure

Use-def chain: for each 

use of a variable store the 

set of reaching definitions

Def-use chain: for each 

definition d of a variable 

store all its uses 

Generalization: static single-assignment (SSA) form – see future lecture.

x = …

x = …

y = ..x..

… = ..x.. … = ..x..

… = ..y..

i1

i2

i3

i4

i5

i6

Var Use Defs

x i2 i1

x i4 i1, i3

x i5 i1, i3

y i6 i5

Var Def Uses

x i1 i2, i4, i5

x i3 i4, i5

y i5 I6


