
1

Topic 10: Dataflow Analysis

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Analysis and Transformation

analysis spans multiple procedures

single-procedure-analysis: intra-procedural

Dataflow Analysis Motivation

Dataflow Analysis Motivation

Assuming only r5 is live-out at instruction 4...

r2

r3

r4

Dataflow Analysis

Iterative Dataflow Analysis Framework

Definitions

Iterative Dataflow Analysis Framework

Definitions for Liveness Analysis

Definitions for Liveness Analysis

Remember generic equations:

r1

r2

r3

r1

r1

r1

r2, r3

r2

r3

--

--

--

Smart ordering: visit nodes in reverse order of execution.

--

r1

r2

r3

r1

r1

r1

r2, r3

r2

r3

--

--

--

Smart ordering: visit nodes in reverse order of execution.

-- r3

r3 r3, r1
r3, r1 ?

r1

r2

r3

r1

r1

r1

r2, r3

r2

r3

--

--

--

Smart ordering: visit nodes in reverse order of execution.

-- r3

r3 r3, r1
r3, r1 r3, r2
r3, r2 r3, r2

r3, r2 r3, r1

r3, r1 r3

?

r1

r2

r3

r1

r1

r1

r2, r3

r2

r3

--

--

--

Smart ordering: visit nodes in reverse order of execution.

-- r3

r3 r3, r1
r3, r1 r3, r2
r3, r2 r3, r2

r3, r2 r3, r1

r3, r1 r3

-- r3

r3, r1

:

:

Live Variable Application 1: Register Allocation

Interference Graph

r1 r3
?

r2

Interference Graph

r1 r3

r2

Live Variable Application 2: Dead Code Elimination

of the form

of the form

Live Variable Application 2: Dead Code Elimination

of the form

of the form

This may lead to further optimization

opportunities, as uses of variables in s

disappear.  repeat all / some

analysis / optimization passes!

Reaching Definition Analysis

Reaching Definition Analysis

(details on next slide)

Reaching definitions: definition-ID’s

1. give each definition point a label (“definition ID”) d:

2. associate each variable t with a set of labels:
defs(t) = the labels d associated with a def of t

3. Consider the effects of instruction forms on gen/kill

d: t b op c d: t M[b] d: t f(a_1, …, a_n)

Statement s Gen[s] Kill[s]

d: t <- b op c {d} defs(t) – {d}

d: t <- M[b] {d} defs(t) – {d}

M[a] <- b {} {}

if a relop b goto l1 else
goto L2

{} {}

Goto L {} {}

L: {} {}

f(a_1, …, a_n) {} {}

d: t <- f(a_1, …, a_n) {d} defs(t)-{d}

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

defs(a) = ? defs(c) = ?

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

defs(a) = {1, 6} defs(c) = {2, 4, 7}

?

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

defs(a) = {1, 6} defs(c) = {2, 4, 7}

?

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

defs(a)-{1}

defs(a) = {1, 6} defs(c) = {2, 4, 7}

defs(c)-{2}

defs(c)-{7}

defs(a)-{6}

defs(c)-{4}

6

4, 7

2, 7

1

2, 4

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

Direction: FORWARD,

IN/OUT initially {}

?

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

{1,2} {1, 2}

{1,2} {1, 4}

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

{1} {1, 2}

{1,2} {1, 4}

{1,4} {1, 4}

{1,2} {2,6}

{2,6} {6,7}

Reaching Defs: Example

4: c <- c+c

2: c <- 1

7: c <- 0 5: goto L1

1: a <- 5

3: L1: if c > a goto L2

6: L2: a <- c-a

1

2

4

6

7

6

4, 7

2, 7

1

2, 4

{ } {1}
{1} {1, 2}

{1,2} {1, 2}

{1,2} {1, 4}

{1,4} {1, 4}

{1,2} {2,6}

{2,6} {6,7}

{ } {1}
{1} {1, 2}

{1,2,4} {1, 2,4}

{1,2,4} {1, 4}

{1,4} {1, 4}

{1,2,4} {2,4,6}

{2,4,6} {6,7}

No change

10

Reaching Definition Application 1: Constant Propagation

c

5

Similarly: copy propagation,

replace eg

r1 = r2; r3  r1 + 5

with r3  r2 + 5

But often register allocation can

already coalesce r1 and r2.

5

5

Reaching Definition Application 2: Constant Folding

15

Common Subexpression Elimination

CSE

Common Subexpression Elimination

r1

CSE

Common Subexpression Elimination

r1

r1

CSE Copy Prop.

Definitions

entry

r1 = x op y

r2 = x op y

r3 = x op y

x:=66

no defs of registers

used by e here!

e

e must be

computed at

least once on

any path

e available here!Generally, many expressions are available at any program point

Definitions

entry

r1 = x op y

r2 = x op y

r3 = x op y

x:=66

no defs of registers

used by e here!

e

e must be

computed at

least once on

any path

e available here!

(ie statements generate/kill availability)

Generally, many expressions are available at any program point

Definitions

entry

r1 = x op y

r2 = x op y

r3 = x op y

x:=66

no defs of registers

used by e here!

e

e must be

computed at

least once on

any path

e available here!

(ie statements generate/kill availability)

Generally, many expressions are available at any program point

• Statement M[r2] = e

- generates no expression (we do

availability in register here)

- kills any M[..] expression, ie loads

Iterative Dataflow Analysis Framework (forward)

Statement s Gen(s) Kill(s)

t  b op c {b op c} exp(t)

expressions

containing t

OK?

Iterative Dataflow Analysis Framework (forward)

Statement s Gen(s) Kill(s)

t  b op c {b op c} – kill(s) exp(t)

t  M[b] {M[b]} – kill(s) exp(t)

M[a]  b {} “fetches”

if a rop b goto L1
else goto L2

{} {}

Goto L {} {}

L: {} {}

f(a1,..,an) ? ?

t  f(a1, .., an) ? ?

expressions

containing t

expressions of

the form M[_]

to deal with t = b or t = c

Iterative Dataflow Analysis Framework (forward)

Statement s Gen(s) Kill(s)

t  b op c {b op c} – kill(s) exp(t)

t  M[b] {M[b]} – kill(s) exp(t)

M[a]  b {} “fetches”

if a rop b goto L1
else goto L2

{} {}

Goto L {} {}

L: {} {}

f(a1,..,an) {} “fetches”

t  f(a1, .., an) {} exp(t) “fetches”

expressions

containing t

expressions of

the form M[_]

∩

to deal with t = b or t = c

Available Expression Analysis

• only expressions that are out-available at all predecessors of n are in-available at n

• fact that sets shrink triggers initialization of all sets to U (set of all expressions),

except for IN[entry] = {}

Step 1: fill in Kill[n]

Node n Gen[n] Kill[n]

1

2

3

4

5

6

7

8

9

Universe U of expressions:

M[r5], M[A], M[B],

r1+r2, r1+ 12, r3+r1 “fetches”

exp(r1)exp(r2) exp(r3)

exp(r5)

no singleton registers (r4 etc)

no Boolean exprs (r3>r2)

Step 2: fill in Gen[n]

Node n Gen[n] Kill[n]

1 r1+r2, r1+ 12, r3+r1

2 r1+r2

3 r3+r1

4 -

5 -

6 r1+r2, r1+ 12, r3+r1

7 -

8 M[r5]

9 M[r5], M[A], M[B]

Universe U of expressions:

M[r5], M[A], M[B],

r1+r2, r1+ 12, r3+r1 “fetches”

exp(r1)exp(r2) exp(r3)

exp(r5)

no singleton registers (r4 etc)

no Boolean exprs (r3>r2)

Example

Node n Gen[n] Kill[n]

1 M[A] r1+r2, r1+ 12, r3+r1

2 M[B] r1+r2

3 r1+r2 r3+r1

4 r3+r1 -

5 - -

6 - r1+r2, r1+ 12, r3+r1

7 r1+r2 -

8 r1+r2 M[r5]

9 - M[r5], M[A], M[B]

Universe U of expressions:

M[r5], M[A], M[B],

r1+r2, r1+ 12, r3+r1 “fetches”

exp(r1)exp(r2) exp(r3)

exp(r5)

no singleton registers (r4 etc)

no Boolean exprs (r3>r2)

Example: hash expressions

n Gen[n] Kill[n]

1 M[A] r1+r2, r1+ 12, r3+r1

2 M[B] r1+r2

3 r1+r2 r3+r1

4 r3+r1 -

5 - -

6 - r1+r2, r1+ 12, r3+r1

7 r1+r2 -

8 r1+r2 M[r5]

9 - M[r5], M[A], M[B]

n Gen[n] Kill[n]

1 5 1, 2, 3

2 6 1

3 1 3

4 3 -

5 - -

6 - 1, 2, 3

7 1 -

8 1 4

9 - 4, 5, 6

r1+r2 1

r1+12 2

r3+r1 3

M[r5] 4

M[A] 5

M[B] 6

Step 3: DF iteration

FORWARD

U = {1, .., 6}

In Out In[n] Out[n]

{} U

U U

U U

U U

U U

U U

U U

U U

U U

:
:

:

Example

FORWARD

U = {1, .., 6}

In Out In[n] Out[n]

{} U {} 5

U U 5 5,6

U U 5, 6 1, 5, 6

U U 1, 5, 6 1, 3, 5, 6

U U 1, 3, 5, 6 1, 3, 5, 6

U U 1, 3, 5, 6 5, 6

U U 5, 6 1, 5, 6

U U 1, 5, 6 1, 5, 6

U U 1, 5, 6 1

Example

In[n] Out[n]

{} 5

5 5, 6

5, 6 1, 5, 6

1, 5, 6 1, 3, 5, 6

1, 3, 5, 6 1, 3, 5, 6

1, 3, 5, 6 5, 6

5, 6 1, 5, 6

1, 5, 6 1, 5, 6

1, 5, 6 1

M[A]

M[A], M[B]

r1+r2, M[A], M[B]

r1+r2, r3+r1, M[A], M[B]

r1+r2, r3+r1, M[A], M[B]

M[A], M[B]

r1+r2, M[A], M[B] r1+r2, M[A], M[B]

r1+r2

r1+r2, M[A], M[B]

r1+r2 1

r1+12 2

r3+r1 3

M[r5] 4

M[A] 5

M[B] 6

Common Subexpression Elimination (CSE)

Note that the same w is used for all occurrences of x op y:

s1: v = x op y s2: u = x op y

s: t = x op y

s1’: w = x op y

v = w
s2’: w = x op y

u=w

s: t = w

Can be seen as further analysis: “reaching expressions”

CSE Example

w

w

; r3 = w

; r4 = w

w

Copy Propagation

Copy Propagation

r4 = r99 + r1

M[r99] = r4

Sets

Basic Block Level Analysis

defs uses

Basic Block Level Analysis

Basic Block Level Analysis

IN[pn]

=

OUT[pn]

=

Reducible Flow Graphs Revisited

Not a backedge – dest

does not dominate src

reducible

irreducible

Reducible Flow Graphs – Structured Programs

Subgraph H of CFG, and

nodes u є H, v є H such that

• all edges into H go to u,

• all edges out of H go to v

Reaching Definitions for Structured Programs

p

n

l r

Remember:

Conservative Approximations

Limitation of Dataflow Analysis

Other example:

There are more sophisticated program analyses that

• can (conservatively) approximate the ranges/sets of “possible values”

• fit into a general framework of transfer functions and inference by

iterated updates until a fixed point is reached: “abstract interpretation”

• are very useful for eliminating dead branches, showing that

array accesses are always within range,…

But eventually, they run into the same theoretical limitations

Implementation issues

1. Representation of data flow info (sets of variables, expressions, labels, …)

• linked lists, maybe ordered by variable name

• suitable for sparse analyses (typically, only few variables are live

at a program point …)

• bit-vectors of length N, if set is of size < 2^N

• union, intersection implemented by bit-wise OR/AND

• suitable for dense analyses

2. Speeding up iterations: worklist algorithms

• instead of traversing all nodes in each iteration, just revisit those nodes

for which IN/OUT might change

• FORWARD: after visiting a node, if OUT[n] was modified, ensure that

all successors of n are in the queue (insert if necessary)

• BACKWARD: similarly, add predecessors of n if IN[n] has changed

3. “single-information-at-a-time” versus “exhaustive” information:

• “is the (costly-to-compute) expression e available here” versus “give me

all available expressions, at all program points”

Use-def chains, def-use chains

• many optimizations exploit def-use relationship

• avoid recalculation by introducing a data structure

Use-def chain: for each

use of a variable store the

set of reaching definitions

Def-use chain: for each

definition d of a variable

store all its uses

Generalization: static single-assignment (SSA) form – see future lecture.

x = …

x = …

y = ..x..

… = ..x.. … = ..x..

… = ..y..

i1

i2

i3

i4

i5

i6

Var Use Defs

x i2 i1

x i4 i1, i3

x i5 i1, i3

y i6 i5

Var Def Uses

x i1 i2, i4, i5

x i3 i4, i5

y i5 I6

