
1

Topic 9: Control Flow

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

The Front End

The Back End

(Intel-HP codename for “Itanium”; uses

compiler to identify parallelism)

Optimization

 load address of array a

 load constant 4

 calculate offset for index i

 calculate address of a[i]

 load content of x

 store x in a[i]

increment loop counter i

 repeat, unless exit condition holds

 r1 holds loop index i

How can we optimize this code for code size/speed/resource usage/…?

Optimization

 load address of array a

 load constant 4

 calculate offset for index i

 calculate address of a[i]

 load content of x

 store x in a[i]

increment loop counter i

 repeat, unless exit condition holds

 r1 holds loop index i

Instructions not dependent of iteration count…

…can be moved outside the loop!

Register Allocation

Q: can any of the registers be

shared/reused? – analyze

liveness/def-use

Register Allocation

Q: can any of the registers be

shared/reused? – analyze

liveness/def-use

A: registers r4 and r5 don’t

overlap – can map to same

register, say r5!

Then, rename r6 to r4.

Scheduling

Q: can we exploit this?

Scheduling

A: can use the “empty slot” to execute some other instruction A,

as long as A is independent (does not consume the value in r5)

Scheduling

Can use the “empty slot” to execute some other instruction A, as

long as A is independent (does not consume the value in r5)

Backend analyses and tranformations
e.g. loop-invariant

code removal

Control Flow Analysis

Control Flow Analysis Example

1

5

4

3

2

6

7

8

Control Flow Analysis Example

1

5

4

3

2

6

7

8

1

5

4

3

2

6

7

8

Basic Blocks

(extra labels and jumps mentioned in previous lecture now omitted for simplicity)

CFG of Basic Blocks

1

54

3

2

1

5

4

3

2

Start

End

CFG:

BB1

BB2

BB3

BB4

BB5

Domination Motivation

1. propagate r1=4

2. exploit 4+5=9

assume r1 dead here

“constant folding”

Domination Motivation

1. propagate r1=4

2. exploit 4+5=9

What about this:

assume r1 dead here

“constant folding”

Domination Motivation

1. propagate r1=4

2. exploit 4+5=9

What about this:

Illegal if r1=4 does not hold in the other incoming arc! -- Need to analyze

which basic blocks are guaranteed to have been executed prior to join.

Dominator Analysis

Dominator Analysis

Dominator Analysis

nodes that dominate all predecessors of n

starting point: n dominated by all nodes

Dominator Analysis Example

s0=

Task: fill in column Dom[n]

Dominator Analysis Example

s0=

More concise information: immediate dominators/dominator tree.

Dominator Analysis Example

Hence: last dominator of n on any

path from s0 to n is IDom[n]

Task: fill in column IDom[n]

Dominator Analysis Example

Hence: last dominator of n on any

path from s0 to n is IDom[n]

-

1

2

2

2

4

2

5

8

9

7

2

Use of Immediate Dominators: Dominator Tree

Immediate dominators can be arranged in tree

s0=1

2

3 4 5

6

7

8

9

10

11

12

• children of node n: the nodes m such that n=IDom[m] • root: s0

• hence: each node dominates only its tree descendants

(note: some tree arcs are

CFG edges, some are not)

Post Dominator

Loop Optimization

Examples of Loops

1

32

4

5

2

43

6

1

5

1

42 3

Examples of Loops

1

32

4

5

Two loops, with identical

header node: 1

2

43

6

1

5

Header node: 2

Header node: 1

Header node: 1

1

42 3

Back Edges

Back-edges: 3 2, 4 2, 9 8, 10 5

Natural Loops Back-edge Header of
nat.loop

Nodes

3 2

4 2

9 8

10 5

Natural Loops Back-edge Header of
nat.loop

Nodes

3 2 2 2, 3

4 2 2 2, 4

9 8 8 8, 9

10 5 5 5, 8, 9, 10

Q: Suppose we had an additional

edge 5 3 – is this a backedge?

Natural Loops Back-edge Header of
nat.loop

Nodes

3 2 2 2, 3

4 2 2 2, 4

9 8 8 8, 9

10 5 5 5, 8, 9, 10

Q: Suppose we had an additional

edge 5 3 – is this a backedge?

A: No! 3 does not dominate 5!

Loop Optimization

Loop Optimization

{1,2,3} is not a loop:

• 1 is not a header: there are no paths/arcs

back to 1

• 2 is not a header: it does not dominate 1 or 3

• similarly for 3

1

32

This CFG does not

contain a loop!

{2,3} is not a loop:

• 2 is not a header: it does not dominate 3

• similarly for 3

Loop Optimization

“into the edge” leading to the header.

Loop Optimization

the loop increment/decrement i, and by a loop-independent value.

Q: is there an induction variable here?

Loop Optimization

the loop increment/decrement i, and by a loop-independent value.

r1 1 2 3 4

r4 0 4 8 12

holds here

r1 is induction

variable!

Loop Optimization

the loop increment/decrement I, by a loop-independent value.

r1 1 2 3 4

r4 0 4 8 12

r4 = r4 + 4 // replace * by +

r4 <= 40

r4 = -4

Eliminated r1 and r3, cut 2 instructions; made 1 instruction 1 cycle faster!

Non-Loop Cycles

Remember: this CFG does not

contain a loop!
1

32

Reduction: collapse nodes, eliminate edges

Node Splitting

1

32

1

32

2’

1. duplicate a node of

the cycle, say 2

Node Splitting

1

32

1

32

2’

1. duplicate a node of

the cycle, say 2

2. connect the copy to

its successor and

predecessor

Node Splitting

1

32

1

32

2’

1. duplicate a node of

the cycle, say 2

2. connect the copy to

its successor and

predecessor

3. the successor of

the copy is the loop

header!

Reduction

A

CB

Collapse nodes, eliminate edges

1

4 5 6

2 3 7

8

9

A

B C

