
1

Topic 6: Activation Records

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

2

Activation Records

3

The Stack

• holds local variables (and other data, see later)

• implemented as large array that typically grows downwards

towards lower addresses, and shrinks upwards

usp
sp

Push(r1):

stack_pointer --;
M[stack_pointer] = r1;

r1 = M[stack_pointer];
stack_pointer++;

r1 = Pop():

v sp
sp

v

ur1

ur1 ur1

vr1

occasionally, we also need to access the previous activation

record (ie frame of caller). Hence, simple push/pop insufficient.

But:

Solution:
• treat stack as array with index off of stack_pointer
• push/pop entire activation records

4

The Stack

• holds local variables (and other data, see later)

• implemented as large array that typically grows downwards

towards lower addresses, and shrinks upwards

usp
sp

Push(r1):

stack_pointer --;
M[stack_pointer] = r1;

r1 = M[stack_pointer];
stack_pointer++;

r1 = Pop():

v sp
sp

v

ur1

ur1 ur1

vr1

occasionally, we also need to access the previous activation

record (ie frame of caller). Hence, simple push/pop insufficient.

But:

Solution:
• treat stack as array with index off of stack_pointer
• push/pop entire activation records

5

The Stack

• holds local variables (and other data, see later)

• implemented as large array that typically grows downwards

towards lower addresses, and shrinks upwards

usp
sp

Push(r1):

stack_pointer --;
M[stack_pointer] = r1;

r1 = M[stack_pointer];
stack_pointer++;

r1 = Pop():

v sp
sp

v

ur1

ur1 ur1

vr1

occasionally, we also need to access the previous activation

record (ie frame of caller). Hence, simple push/pop insufficient.

But:

Solution:
• treat stack as array with index off of stack_pointer
• push/pop entire activation records

6

Example

7

Example

8

Example

9

Example

10

Example

11

Recursive Example

12

Recursive Example

13

Recursive Example

14

Recursive Example

15

Functional Languages

16

Functional Languages

Step2

17

Functional Languages

Step2

i.e. g(5)

18

Functional Languages

Combination of

• nested functions and

• functions that are returned as results (i.e. higher-order)

requires that

• local variable remain in existence even after enclosing

function has returned

• activation records are allocated on heap (“closures”),

not on the stack

For now, focus on languages that use stack.

19

Stack Frame Organizations

20

Typical Stack Frame

21

Stack Frame Example

22

Stack Frame Example

b1

b2

b3

push outgoing arguments; decrease SP

23

Stack Frame Example

b1

b2

b3

• push frame pointer to f’s frame

• make old SP the new FP for g

• update SP by subtracting

size(g)

24

Stack Frame Example

b1

b2

b3

b3

b1/Garbage

b2/Garbage

• restore f’s SP by setting it

to g’s FP

• restore f’s FP by following

g’s dynamic link, now

located at SP-1

• pop the arguments by

incrementing SP

25

Parameter Passing

in memory

a register argument has its address taken,

Solution: space is reserved by caller, but only written to by callee, and only if necessary

26

Parameter Passing

27

Registers

28

Registers

29

Registers

30

Return Address and Return Value

31

Frame Resident Variables

and must hence be held in memory if

32

Static Links

33

Static Links

34

Static Links: nonrecursive call

• Dynamic links point to FP of caller

• Static links point to FP of surrounding

function’s most recent instance

a=5

Dynamic Link

&b = M[FP]-2

&a = M[M[FP]]-2

35

Static Links: recursive call

• Dynamic links point to FP of caller

• Static links point to FP of surrounding

function’s most recent instance

a=5
Dynamic Link

&b = M[FP]-2

&a = M[M[FP]]-2

36

Static Links

• dynamic link still needed to restore caller’s FP during function return

• offsets on slides 22-24 need to be modified by +/- 1 to account for

the extra slot used by the static link.

