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Activation Records
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The Stack

• holds local variables (and other data, see later)

• implemented as large array that typically grows downwards 

towards lower addresses, and shrinks upwards

usp
sp

Push(r1):

stack_pointer --;
M[stack_pointer] = r1;

r1 = M[stack_pointer];
stack_pointer++;

r1 = Pop():

v sp
sp

v

ur1

ur1 ur1

vr1

occasionally, we also need to access the previous activation 

record (ie frame of caller). Hence, simple push/pop insufficient.

But:

Solution:
• treat stack as array with index off of stack_pointer
• push/pop entire activation records
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Example
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Recursive Example
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Recursive Example
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Recursive Example
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Recursive Example
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Functional Languages
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Functional Languages

Step2
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Functional Languages

Step2

i.e. g(5)
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Functional Languages

Combination of 

• nested functions and 

• functions that are returned as results (i.e. higher-order) 

requires that

• local variable remain in existence even after enclosing 

function has returned

• activation records are allocated on heap (“closures”), 

not on the stack

For now, focus on languages that use stack.
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Stack Frame Organizations
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Typical Stack Frame
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Stack Frame Example



22

Stack Frame Example

b1

b2

b3

push outgoing arguments; decrease SP 
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Stack Frame Example

b1

b2

b3

• push frame pointer to f’s frame

• make old SP the new FP for g

• update SP by subtracting 

size(g)



24

Stack Frame Example

b1

b2

b3

b3

b1/Garbage

b2/Garbage

• restore f’s SP by setting it 

to g’s FP 

• restore f’s FP by following 

g’s dynamic link, now 

located at SP-1

• pop the arguments by 

incrementing SP
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Parameter Passing

in memory

a register argument has its address taken,

Solution: space is reserved by caller, but only written to by callee, and only if necessary
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Parameter Passing
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Registers
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Registers
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Registers
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Return Address and Return Value
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Frame Resident Variables

and must hence be held in memory if



32

Static Links
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Static Links
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Static Links: nonrecursive call 

• Dynamic links point to FP of caller

• Static links point to FP of surrounding 

function’s most recent instance

a=5

Dynamic Link

&b = M[FP]-2

&a = M[M[FP]]-2
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Static Links: recursive call

• Dynamic links point to FP of caller

• Static links point to FP of surrounding 

function’s most recent instance

a=5
Dynamic Link

&b = M[FP]-2

&a = M[M[FP]]-2
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Static Links

• dynamic link still needed to restore caller’s FP during function return

• offsets on slides 22-24 need to be modified by +/- 1 to account for 

the extra slot used by the static link.


