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Types: potential benefits (I)

For programmers:

• help to eliminate common programming mistakes, 
particularly mistakes that might lead to runtime errors 
(or prevent program from being compiled)

• provide abstractions and modularization discipline: can 
substitute code with alternative implementation without 
breaking surrounding program context

Example (ML signatures):

sig

type sorted_list

val sort : int list -> sorted_list

val lookup : sorted_list -> int -> bool

val insert: sorted_list -> int -> sorted_list

end

Internal definition of sorted_list not revealed to clients, so can

replace one implementation by another one!

Similarly for other invariants.
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Types: potential benefits (II)

For language designers:

• yields structuring mechanism for programs – thus 
encodes abstraction principles that motivate 
development of new language

• basis for studying (interaction between) language 
features (references, exceptions, IO, other side effects, 
h-o-functions)

• formal basis for reasoning about program behavior 
(verification, security analysis, resource usage)
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Types: potential benefits (III)

For compiler writers:

• filter out programs that backend should never see (and can’t handle)

• provide information that’s useful in later phases:

• is that + a floating point add or an integer add?

• does value v fit into a single register? (size of data types)

• how should the stack frame for function f be organized (number and 
type/size of function arguments and return value)

• support generation of efficient code: 

• less code needed for handling errors (and handling casting)

• enables sharing of implementations (source of confusion eliminated by 
types)

• postY2k: typed intermediate languages

• model intermediate representations as full language, with types that 
communicate structural code properties and analysis results between 
compiler phases (example: different types for caller/callee registers)

• “refined” type systems: provide alternative formalism for program 
analysis and optimization
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Type-enforced safety guarantees

• Memory Safety – can’t dereference something not a 
pointer

• Control-Flow Safety – can’t jump to something not code

• Type Safety – typing predications (“this value will be a 
string”) come true at run time, so no operator-operand 
mismatches 

Prevents programmer from writing code that “obviously” 
can’t be right.

Contrast with C (weakly typed): implicit casting, null pointers, 

array-out-of-bounds, buffer overruns, security violations

All these errors are eliminated during development time, 

so applications much more robust!
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Type systems: limitations

• Can’t eliminate all runtime errors

• division by zero (input dependence)

• exception behavior often not modeled/enforced

• static type analyses are typically conservative: will reject 
some safe programs due to fundamental undecidability
of perfectly predicting control flow

• Types typically involve some programmer annotations  -
- burden
+ documentation; 
+ burden occurs at compile time, not runtime

• cryptic error messages but trade-off against debugging/ 

tracing effort upon hitting segfault



7

Practical tasks (for compiler writer): develop algorithms for

• type inference: given an expression e, calculate whether there 
some type T such that e:T holds. If so, return (the best such) 
type T, or a representation of all such types. 
May need program annotations.

• type checking: given a fully type-annotated program, check that 
the typing rules are indeed applied correctly

Theoretical tasks (language designer): study

• uniqueness of typings, existence of best types

• decidability and complexity of above tasks / algorithms

• type soundness: give a precise definition of “good behavior 
(runtime model, error model) and prove that “well-typed 
programs can’t go wrong” (Milner)

• Common formalism: derivation systems (cf formal logic)

• formal judgments, derivation/typing rules, derivation trees

Types: design & implementation tasks
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Defining a Formal Type System

• RE  Lexing

• CFG  Parsers

• Inductive Definitions  Type Systems / logical derivation 

systems

Components of a type system:

• a notion of types

• specification of syntactic judgment forms – A judgment is an 
assertion/claim, may or may not be true. 

• implicitly or explicitly underpinned by an interpretation (“validity”)

• Typical judgement forms for type systems in PL:    e:T,  Γ e:T

• inference rules – tell us how to obtain new judgment 
instances from previously derived ones

• should preserve validity so that only “true” judgments can be derived 

т т
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Inference Rules

An inference rule has a set of premises J1, . . . , Jn and 
one conclusion J, separated by a horizontal line:

Read: 

• If I can establish the truth of the premises  J1,...,Jn, I 
can conclude: J is true. 

• To check J, check J1,...,Jn. 

An inference rule with no premises is called an Axiom – J 
always true



But what IS a type?

Competing views:

1. Types are mostly syntactic entities, with little inherent 
meaning:

• the types for this language are A, B, C; here are the typing rules

• if you can’t infer a type for e / check that e:T holds, reject e:
untyped programs are not programs

• intent / design goals of type system (partially) revealed by what you 
can do with well-typed programs (e.g. compile to efficient code)
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Many variations possible, depending on goals!

traditional compiler view

often more modular



Type system for simple expressions
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Type system for simple expressions
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Type system for simple expressions
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Type Checking Implementation

fun check (e: Expr, t: Type): bool := 

case t of

Bool => (case e of … )

| Int => (case e of … );

16

type in the host language (the language 

the compiler is implemented in)



Type Checking Implementation

fun check (e: Expr, t: Type): bool := 

case t of

Bool => (case e of .. )

| Int => (case e of … )
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expressions/types of the 

object language, ie the 

language for which 

we’re writing a compiler



Type Checking Implementation

fun check (e: Expr, t: Type): bool := 

case t of

Bool => (case e of

tt => true

| ff => true 

| f e1 e2 => (case f of 

AND => check (e1,Bool) andalso check (e2, Bool)

| (*similar case for OR *)

| LESS => check (e1, Int) andalso check(e2, Int)

| (*similar cases for EQ etc*)

| _ => false)

| IF e1 THEN e2 ELSE e3 => check (e1, Bool) andalso

check (e2, Bool) andalso (e3, Bool))

| Int => (case e of … )
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Alternative: swap nesting of case 

distinctions for expressions and types.



Type Inference Implementation

fun infer (e:Expr): Type option = 

case e of 

tt => Some Bool
| ff => Some Bool

| BINOP f e1 e2 => ???

| …
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alternative that does not use check:

case (infer e1, infer e2) of 

(Some bool, Some bool) => Some bool

| (_, _) => None



Type Inference Implementation

fun infer (e:Expr): Type option = 

case e of 

tt => Some Bool
| ff => Some Bool
| BINOP f e1 e2 => (case f of

AND => if check(e1, Bool) andalso check(e2, Bool) 

then Some Bool else None

| PLUS => if check (e1, Int) andalso check(e2, Int)
then Some Int else None

| LESS => if check (e1, Int) andalso check (e2, Int)
then Some Bool else None

| … )

| IF e1 THEN e2 ELSE e3 => ???
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alternative that does not use check:

case (infer e1, infer e2) of 

(Some bool, Some bool) => Some bool

| (_, _) => None



Type Inference Implementation

fun infer (e:Expr): Type option = 

case e of 

tt => Some Bool
| ff => Some Bool
| BINOP f e1 e2 => (case f of

AND => if check(e1, Bool) andalso check(e2,Bool) 

then Some Bool else None

| (*similar cases for other binops*) )
| IF e1 THEN e2 ELSE e3 => if check(e1, Bool) 

then case (infer e2, infer e3) of

(Some t1, Some t2) => 

if t1=t2 then Some t1 else None
| (_, _) => None

else None
| (*other expressions*)
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equality between types 

(often defined by induction)

Improvement: replace return type “Type option” by type that 

allows informative error messages in case where inference fails.



Type system for simple expressions
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Type system for simple expressions
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Type system for simple expressions
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Adding variables (I)
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aka symbol table



Adding variables (II)
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side 

condition



Adding variables (II)
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side condition



Adding variables (II)
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side condition



Adding variables (III)
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Adding variables (III)
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Adding variables (III)
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Adding functions (I)
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Adding functions (I)
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Adding functions (I)
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Adding functions (II)
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Adding functions (II)
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???



Adding functions (II)
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Adding functions (II)
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Adding functions (II)
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???



Adding functions (II)
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Adding functions (II)
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References (cf. ML-primer)
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Products/tuples
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Products/tuples
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Products/tuples
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Subtyping (I)
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Subtyping (I)

49



Subtyping (I)
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Subtyping (II)
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Subtyping (II)
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Subtyping (III): propagating through products
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Subtyping (III): propagating through products
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Subtyping (IV): propagating through functions
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Subtyping (V): propagating through references
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Subtyping (V): propagating through references
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HW4: type analysis
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No higher-order functions



Additional aspects

• separate name spaces for type definitions vs variables/ 
functions/procedures  separate environments (cf Tiger) 

• when syntax-directedness fails, requiring user-supplied type 
annotations helps inference
Example: functions declarations, in particularly (mutually) recursive ones 

• not covered:

• overloading (multiple typings for operators)
example: arithmetic operations over int, float, double

• additional syntactic category (eg statements): new judgements

• Casting/coercion

• explicit (ie visible in program syntax): similar to other operators

• implicit: destroys syntax-directness similar to subtyping

• often symbolizes/triggers change of representation (int -> double) that’s 
significant for compiler backend

• polymorphism (finite representations for infinitely many typings)

• arrays, class/object systems incl inheritance, 
signatures/modules/interfaces
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Next steps
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• IR code generation

• But first: need to learn a bit how data will be laid out in 
memory: activation records / frame stack

Useful homework: read MCIL’s sections on TIGER’s 
semantic analysis (Chapter 5) and, if possible, TIGER’s 
activation record layout (Chapters 6)!
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Quiz 3: LR(0)

How many states does the LR(0) parse table for the following 
grammar have? (You may guess or draw the parse table ;-) )

S  B $ P  ε E  B

B  id P P  ( E ) E  B, E

B  id ( E ]

(cf MCIL, page 85, exercise 3.11)


