
1

Topic 5: Types

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

2

Types: potential benefits (I)

For programmers:

• help to eliminate common programming mistakes,
particularly mistakes that might lead to runtime errors
(or prevent program from being compiled)

• provide abstractions and modularization discipline: can
substitute code with alternative implementation without
breaking surrounding program context

Example (ML signatures):

sig

type sorted_list

val sort : int list -> sorted_list

val lookup : sorted_list -> int -> bool

val insert: sorted_list -> int -> sorted_list

end

Internal definition of sorted_list not revealed to clients, so can

replace one implementation by another one!

Similarly for other invariants.

3

Types: potential benefits (II)

For language designers:

• yields structuring mechanism for programs – thus
encodes abstraction principles that motivate
development of new language

• basis for studying (interaction between) language
features (references, exceptions, IO, other side effects,
h-o-functions)

• formal basis for reasoning about program behavior
(verification, security analysis, resource usage)

4

Types: potential benefits (III)

For compiler writers:

• filter out programs that backend should never see (and can’t handle)

• provide information that’s useful in later phases:

• is that + a floating point add or an integer add?

• does value v fit into a single register? (size of data types)

• how should the stack frame for function f be organized (number and
type/size of function arguments and return value)

• support generation of efficient code:

• less code needed for handling errors (and handling casting)

• enables sharing of implementations (source of confusion eliminated by
types)

• postY2k: typed intermediate languages

• model intermediate representations as full language, with types that
communicate structural code properties and analysis results between
compiler phases (example: different types for caller/callee registers)

• “refined” type systems: provide alternative formalism for program
analysis and optimization

5

Type-enforced safety guarantees

• Memory Safety – can’t dereference something not a
pointer

• Control-Flow Safety – can’t jump to something not code

• Type Safety – typing predications (“this value will be a
string”) come true at run time, so no operator-operand
mismatches

Prevents programmer from writing code that “obviously”
can’t be right.

Contrast with C (weakly typed): implicit casting, null pointers,

array-out-of-bounds, buffer overruns, security violations

All these errors are eliminated during development time,

so applications much more robust!

6

Type systems: limitations

• Can’t eliminate all runtime errors

• division by zero (input dependence)

• exception behavior often not modeled/enforced

• static type analyses are typically conservative: will reject
some safe programs due to fundamental undecidability
of perfectly predicting control flow

• Types typically involve some programmer annotations -
- burden
+ documentation;
+ burden occurs at compile time, not runtime

• cryptic error messages but trade-off against debugging/

tracing effort upon hitting segfault

7

Practical tasks (for compiler writer): develop algorithms for

• type inference: given an expression e, calculate whether there
some type T such that e:T holds. If so, return (the best such)
type T, or a representation of all such types.
May need program annotations.

• type checking: given a fully type-annotated program, check that
the typing rules are indeed applied correctly

Theoretical tasks (language designer): study

• uniqueness of typings, existence of best types

• decidability and complexity of above tasks / algorithms

• type soundness: give a precise definition of “good behavior
(runtime model, error model) and prove that “well-typed
programs can’t go wrong” (Milner)

• Common formalism: derivation systems (cf formal logic)

• formal judgments, derivation/typing rules, derivation trees

Types: design & implementation tasks

8

Defining a Formal Type System

• RE  Lexing

• CFG  Parsers

• Inductive Definitions  Type Systems / logical derivation

systems

Components of a type system:

• a notion of types

• specification of syntactic judgment forms – A judgment is an
assertion/claim, may or may not be true.

• implicitly or explicitly underpinned by an interpretation (“validity”)

• Typical judgement forms for type systems in PL: e:T, Γ e:T

• inference rules – tell us how to obtain new judgment
instances from previously derived ones

• should preserve validity so that only “true” judgments can be derived

т т

9

Inference Rules

An inference rule has a set of premises J1, . . . , Jn and
one conclusion J, separated by a horizontal line:

Read:

• If I can establish the truth of the premises J1,...,Jn, I
can conclude: J is true.

• To check J, check J1,...,Jn.

An inference rule with no premises is called an Axiom – J
always true

But what IS a type?

Competing views:

1. Types are mostly syntactic entities, with little inherent
meaning:

• the types for this language are A, B, C; here are the typing rules

• if you can’t infer a type for e / check that e:T holds, reject e:
untyped programs are not programs

• intent / design goals of type system (partially) revealed by what you
can do with well-typed programs (e.g. compile to efficient code)

10

But what IS a type?

Competing views:

1. Types are mostly syntactic entities, with little inherent
meaning:

• the types for this language are A, B, C; here are the typing rules

• if you can’t infer a type for e / check that e:T holds, reject e:
untyped programs are not programs

• intent / design goals of type system (partially) revealed by what you
can do with well-typed programs (e.g. compile to efficient code)

2. Types have “semantic content”, for example by capturing
properties an execution may have

• types as an algorithmic approximation to classify behaviors

• if you can’t derive a judgement e:T using the typing rules, but e still
“has” the behavior captured by T, that’s fine

• => types describe properties of a priori untyped programs

11

But what IS a type?

Competing views:

1. Types are mostly syntactic entities, with little inherent
meaning:

• the types for this language are A, B, C; here are the typing rules

• if you can’t infer a type for e / check that e:T holds, reject e:
untyped programs are not programs

• intent / design goals of type system (partially) revealed by what you
can do with well-typed programs (e.g. compile to efficient code)

2. Types have “semantic content”, for example by capturing
properties an execution may have

• types as an algorithmic approximation to classify behaviors

• if you can’t derive a judgement e:T using the typing rules, but e still
“has” the behavior captured by T, that’s fine

• => types describe properties of a priori untyped programs

12

Many variations possible, depending on goals!

traditional compiler view

often more modular

Type system for simple expressions

13

Type system for simple expressions

14

Type system for simple expressions

15

Type Checking Implementation

fun check (e: Expr, t: Type): bool :=

case t of

Bool => (case e of …)

| Int => (case e of …);

16

type in the host language (the language

the compiler is implemented in)

Type Checking Implementation

fun check (e: Expr, t: Type): bool :=

case t of

Bool => (case e of ..)

| Int => (case e of …)

17

expressions/types of the

object language, ie the

language for which

we’re writing a compiler

Type Checking Implementation

fun check (e: Expr, t: Type): bool :=

case t of

Bool => (case e of

tt => true

| ff => true

| f e1 e2 => (case f of

AND => check (e1,Bool) andalso check (e2, Bool)

| (*similar case for OR *)

| LESS => check (e1, Int) andalso check(e2, Int)

| (*similar cases for EQ etc*)

| _ => false)

| IF e1 THEN e2 ELSE e3 => check (e1, Bool) andalso

check (e2, Bool) andalso (e3, Bool))

| Int => (case e of …)

18

Alternative: swap nesting of case

distinctions for expressions and types.

Type Inference Implementation

fun infer (e:Expr): Type option =

case e of

tt => Some Bool
| ff => Some Bool

| BINOP f e1 e2 => ???

| …

19

Type Inference Implementation

fun infer (e:Expr): Type option =

case e of

tt => Some Bool
| ff => Some Bool
| BINOP f e1 e2 => (case f of

AND => if check(e1, Bool) andalso check(e2, Bool)

then Some Bool else None

| …

20

Type Inference Implementation

fun infer (e:Expr): Type option =

case e of

tt => Some Bool
| ff => Some Bool
| BINOP f e1 e2 => (case f of

AND => if check(e1, Bool) andalso check(e2, Bool)

then Some Bool else None

| …

21

alternative that does not use check:

case (infer e1, infer e2) of

(Some bool, Some bool) => Some bool

| (_, _) => None

Type Inference Implementation

fun infer (e:Expr): Type option =

case e of

tt => Some Bool
| ff => Some Bool
| BINOP f e1 e2 => (case f of

AND => if check(e1, Bool) andalso check(e2, Bool)

then Some Bool else None

| PLUS => if check (e1, Int) andalso check(e2, Int)
then Some Int else None

| LESS => if check (e1, Int) andalso check (e2, Int)
then Some Bool else None

| …)

| IF e1 THEN e2 ELSE e3 => ???

22

alternative that does not use check:

case (infer e1, infer e2) of

(Some bool, Some bool) => Some bool

| (_, _) => None

Type Inference Implementation

fun infer (e:Expr): Type option =

case e of

tt => Some Bool
| ff => Some Bool
| BINOP f e1 e2 => (case f of

AND => if check(e1, Bool) andalso check(e2,Bool)

then Some Bool else None

| (*similar cases for other binops*))
| IF e1 THEN e2 ELSE e3 => if check(e1, Bool)

then case (infer e2, infer e3) of

(Some t1, Some t2) =>

if t1=t2 then Some t1 else None
| (_, _) => None

else None
| (*other expressions*)

23

equality between types

(often defined by induction)

Improvement: replace return type “Type option” by type that

allows informative error messages in case where inference fails.

Type system for simple expressions

24

Type system for simple expressions

25

Type system for simple expressions

26

Adding variables (I)

27

aka symbol table

Adding variables (II)

28

side

condition

Adding variables (II)

29

side condition

Adding variables (II)

30

side condition

Adding variables (III)

31

Adding variables (III)

32

Adding variables (III)

33

Adding functions (I)

34

Adding functions (I)

35

Adding functions (I)

36

Adding functions (II)

37

Adding functions (II)

38

???

Adding functions (II)

39

Adding functions (II)

40

Adding functions (II)

41

???

Adding functions (II)

42

Adding functions (II)

43

References (cf. ML-primer)

44

Products/tuples

45

Products/tuples

46

Products/tuples

47

Subtyping (I)

48

Subtyping (I)

49

Subtyping (I)

50

Subtyping (II)

51

Subtyping (II)

52

Subtyping (III): propagating through products

53

Subtyping (III): propagating through products

54

Subtyping (IV): propagating through functions

55

Subtyping (V): propagating through references

56

Subtyping (V): propagating through references

57

HW4: type analysis

58

No higher-order functions

Additional aspects

• separate name spaces for type definitions vs variables/
functions/procedures  separate environments (cf Tiger)

• when syntax-directedness fails, requiring user-supplied type
annotations helps inference
Example: functions declarations, in particularly (mutually) recursive ones

• not covered:

• overloading (multiple typings for operators)
example: arithmetic operations over int, float, double

• additional syntactic category (eg statements): new judgements

• Casting/coercion

• explicit (ie visible in program syntax): similar to other operators

• implicit: destroys syntax-directness similar to subtyping

• often symbolizes/triggers change of representation (int -> double) that’s
significant for compiler backend

• polymorphism (finite representations for infinitely many typings)

• arrays, class/object systems incl inheritance,
signatures/modules/interfaces

59

Next steps

60

• IR code generation

• But first: need to learn a bit how data will be laid out in
memory: activation records / frame stack

Useful homework: read MCIL’s sections on TIGER’s
semantic analysis (Chapter 5) and, if possible, TIGER’s
activation record layout (Chapters 6)!

61

Quiz 3: LR(0)

How many states does the LR(0) parse table for the following
grammar have? (You may guess or draw the parse table ;-))

S  B $ P  ε E  B

B  id P P  (E) E  B, E

B  id (E]

(cf MCIL, page 85, exercise 3.11)

