Topic 5.

Types

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Types: potential benefits (I)

For programmers:

e help to eliminate common programming mistakes,
particularly mistakes that might lead to runtime errors
(or prevent program from being compiled)

e provide abstractions and modularization discipline: can
substitute code with alternative implementation without
breaking surrounding program context

Example (ML signatures):

Sig / Internal definition of sorted_list not revealed to clients, so can
' ' ' |
type sorted_hst replace one implementation by another one!

val sort : int list -> sorted_list

val lookup : sorted_list -> int -> bool

val insert: sorted_list -> int -> sorted_list
end

Similarly for other invariants.

Types: potential benefits (II)

For language designers:

e vyields structuring mechanism for programs — thus
encodes abstraction principles that motivate
development of new language

e basis for studying (interaction between) language
features (references, exceptions, IO, other side effects,
h-o-functions)

o formal basis for reasoning about program behavior
(verification, security analysis, resource usage)

Types: potential benefits (l11)

For compiler writers:

e filter out programs that backend should never see (and can't handle)
e provide information that’s useful in later phases:

is that + a floating point add or an integer add?
does value v fit into a single register? (size of data types)

how should the stack frame for function f be organized (number and
type/size of function arguments and return value)
support generation of efficient code:
* |ess code needed for handling errors (and handling casting)
e enables sharing of implementations (source of confusion eliminated by
types)
postY2k: typed intermediate languages

e model intermediate representations as full language, with types that
communicate structural code properties and analysis results between
compiler phases (example: different types for caller/callee registers)

“refined” type systems: provide alternative formalism for program
analysis and optimization

Type-enforced safety guarantees

e Memory Safety — can’t dereference something not a
pointer

e Control-Flow Safety — can’t jump to something not code

o Type Safety — typing predications (“this value will be a
string”) come true at run time, so no operator-operand
mismatches

All these errors are eliminated during development time,
so applications much more robust!
Prevents programmer from writing code that “obviously”
can't be right.

Contrast with C (weakly typed): implicit casting, null pointers,
array-out-of-bounds, buffer overruns, security violations

Type systems: limitations

e Can't eliminate all runtime errors
 division by zero (input dependence)
e exception behavior often not modeled/enforced

o static type analyses are typically conservative: will reject
some safe programs due to fundamental undecidability
of perfectly predicting control flow

e Types typically involve some programmer annotations -
- burden
+ documentation;
+ burden occurs at compile time, not runtime

e Cryptic error messages ~__ but trade-off against debugging/
tracing effort upon hitting segfault

Types: design & implementation tasks

Practical tasks (for compiler writer): develop algorithms for

o type inference: given an expression e, calculate whether there
some type T such that e:T holds. If so, return (the best such)
type T, or a representation of all such types.

May need program annotations.

o type checking: given a fully type-annotated program, check that
the typing rules are indeed applied correctly

Theoretical tasks (language designer): study

. of typings, existence of types
o and of above tasks / algorithms
0 : give a precise definition of “good behavior

(runtime model, error model) and prove that “well-typed
programs can’t go wrong” (Milner)

e Common formalism: derivation systems (cf formal logic)
o formal judgments, derivation/typing rules, derivation trees

Defining a Formal Type System

e RE - Lexing
e CFG - Parsers

e Inductive Definitions = Type Systems / logical derivation
systems

Components of a type system:
e a notion of fypes

e specification of syntactic judgment forms — A judgment is an
assertion/claim, may or may not be true.
o implicitly or explicitly underpinned by an interpretation (“validity”)
e Typical judgement forms for type systems in PL: —e:T, I —e:T
e jnference rules — tell us how to obtain new judgment
instances from previously derived ones
e should preserve validity so that only “true” judgments can be derived

Inference Rules

An inference rule has a set of premises J;, . . .,], and
one conclusion J, separated by a horizontal line:

J

Read:

e If I can establish the truth of the premises J,,...,J,,, I
can conclude: J is true.

e To check J, check J,...,J,.

An inference rule with no premises is called an Axiom —J]
always true

But what IS a type?

10

Competing views:

1.

Types are mostly syntactic entities, with little inherent
meaning:
e the types for this language are A, B, C; here are the typing rules

e if you can't infer a type for e / check that e: T holds, reject e:
untyped programs are not programs

e intent / design goals of type system (partially) revealed by what you
can do with well-typed programs (e.g. compile to efficient code)

But what IS a type?

Competing views:

1. Types are mostly syntactic entities, with little inherent
meaning:
e the types for this language are A, B, C; here are the typing rules

e if you can't infer a type for e / check that e: T holds, reject e:
untyped programs are not programs

e intent / design goals of type system (partially) revealed by what you
can do with well-typed programs (e.g. compile to efficient code)

21 Types have “semantic content”, for example by capturing
properties an execution may have
e types as an algorithmic approximation to classify behaviors

e if you can't derive a judgement e: T using the typing rules, but e still
“has” the behavior captured by T, that’s fine

e => types describe properties of a priori untyped programs

11

But what IS a type? traditional compiler view

Competing views:

1. Types are mostly syntactic entities, with littl
meaning:
o the types for this language are A, B, C; here gfe the typing rules

e if you can't infer a type for e / check that holds, reject e:
untyped programs are not programs

e intent / design goals of type system (partially) revealed by what you
can do with well-typed programs (e.g. compile to efficient code)
2. Types have “semantic content”, for example by capturing
properties an execution may have
e types as an algorithmic approximation to classify behaviors

e if you can't derive a judgement e: T using the typing rules, but e still
“has” the behavior captured by T, that’s fine

e => types describe properties of a priori unty

inherent

programs

Many variations possible, depending on goals! often more modular

12

Type system for simple expressions

13

Starting point: abstract syntax

e 1= ...| —=1|0[1]...|tt | ff
exe|ifethen eelse e
T o= 4+ = x| AlV]<]|=

Step 1: define notion of types
Aim: separate Integer expressions from boolean
expressions, to prevent operations like 5 -+ tt.
Thus: 7 ::= bool | int

Type system for simple expressions

Step 2: decide on forms of judgments
Fe:T

Intuitive interpretation: “evaluating expression e
yields value of type 7.

Step 3: define inference rules, ideally syntax-directed: one
rule/axiom for each syntax former

Axioms (for atomic expressions):

I — tt : bool FF ~ ff : bool

NUM-———ne{...~1.0.1..}

14

Type system for simple expressions

15

Rules for non-atomic expressions: one hypothesis for each

subexpression.
Built-in operators: prevent application of built-in operators to

wrong kinds of arguments.
—e4:int - e int

|OP . te {4+, —.
— ey & e Int pet X
- e1 :bool F e :bool
B O P NP, : .f'r"w . \"-Jﬁ
- e; = e : bool SEVI
—eq:int F e int
cop ! 2 pe{<,=

~ eq & es : bool
Conditionals: branch condition should be boolean, arms should
agree on their type (r), and overall type is 7, too
~ej:bool Fe:T Fesg:T
—if e; then es else e : 7

ITE

Type Checking Implementation

fun check (e: Expr, t: Type): bool :=
case t of
Bool => (case e of ...)
| Int => (case e of ...);

16

type in the host language (the language
the compiler is implemented in)

Type Checking Implementation

17

fun check (e: Expr, t: Type): bool :=
case t of
Bool => (case e of ..)

expressions/types of the
object language, ie the
language for which

/ we're writing a compiler

| Int => (case e of ...)

Type Checking Implementation

fun check (e: Expr, t: Type): bool :=

case t of
Bool => (case e of
tt => true
| ff => true

| f el e2 => (case f of
AND => check (e1,Bool) andalso check (e2, Bool)
| (*similar case for OR *)
| LESS => check (el, Int) andalso check(e2, Int)
| (*similar cases for EQ etc*)
| _ => false)

| IF el THEN e2 ELSE e3 => check (el, Bool) andalso
check (e2, Bool) andalso (e3, Bool))

| Int => (caseeof ...)

Alternative: swap nesting of case
distinctions for expressions and types.

18

Ty

D€

Im

nlementation

fun infer (e:Expr): Type option =
case e of

tt => Some Bool
ff => Some Bool

BINOP f el e2 => ?7??

19

Type Implementation

fun infer (e:Expr): Type option =
case e of

tt => Some Bool
| ff => Some Bool
| BINOP f el e2 => (case f of

AND => if check(el, Bool) andalso check(e2, Bool)
then Some Bool else None

Type Implementation

21

fun infer (e:Expr): Type option =
case e of

tt => Some Bool
| ff => Some Bool
| BINOP f el e2 => (case f of

AND => if chec

alternative that does not use check:
case (infer e1, infer e2) of
(Some bool, Some bool) => Some bool
| (, _) =>None

1, Bool) andalso check(e2, Bool)

then Some Bool else None

Type Implementation

fun infer (e:Expr): Type option = alternative that does not use check:
case e of case (infer e1, infer e2) of
tt => Some Bool f?om? tz)go[\ll,oioeme bool) => Some bool
| ff => Some Bool ——

| BINOP f el e2 => (case f of
AND => if check(€1, Bool) andalso check(e2, Bool)
then Some Bool else None

| PLUS => if check (el, Int) andalso check(e2, Int)
then Some Int else None

| LESS => if check (el, Int) andalso check (e2, Int)
then Some Bool else None

| ..)
| IF el THEN e2 ELSE e3 => ???

Ty

D€

Im

nlementation

23

fun infer (e:Expr): Type option =
case e of

tt => Some Bool
| ff => Some Bool

| BINOP f el e2 => (case f of

AND => if check(el, Bool) andalso check(e2,Bool)
then Some Bool else None
| (*similar cases for other binops*))

| IF el THEN e2 ELSE e3 => if check(el, Bool)
then case (infer €2, infer e3) of

| (*other expressions*)

else None

(Some t1, Some t2) =>

if t1=t2 then Some t1 else None
| (L,) =>No

equality between types
(often defined by induction)

Improvement: replace return type “Type option™ by type that
allows informative error messages in case where inference fails.

Type system for simple expressions

24

Exercise
Perform syntax-directed inference for the expressions
@ 3+ (if(83<5)An((2+2)=5)then7else (2x5))
@ 3+ (If(83<5)n((2+2)=25)then 7else (5+tt)).
Are the derivations/final judgments unique?

Type system for simple expressions

25

Exercise
Perform syntax-directed inference for the expressions
@ 3+ (if(83<5)An((2+2)=5)then7else (2x5))
@ 3+ (If(83<5)n((2+2)=25)then 7else (5+tt)).
Are the derivations/final judgments unique?

Exercise (homework)

Define a simple type system for above expressions e that
counts the number of atomic subexpressions.

Type system for simple expressions

26

Exercise

Perform syntax-directed inference for the expressions
@ 3+ (if(83<5)An((2+2)=5)then7else (2x5))
@ 3+ (If(83<5)n((2+2)=25)then 7else (5+tt)).
Are the derivations/final judgments unique?

Exercise (homework)

Define a simple type system for above expressions e that
counts the number of atomic subexpressions.

Next: type system for languages with variables, functions,
references, and products/records. These features require new
types, judgment forms, and rules

Adding variables ()

27

Starting point (absyn): extend syntax of expressions:
e.=... X

where x ranges over identifiers

Step 1 (types): no changes — still only booleans and integers

Step 2 (judgments): expressions can contain variables, hence
we can only associate types with expressions if we
aka symbol e given the types of the variables (assumptions).

A (typing) context I is a partial function mapping variables to
types, usually written in the form Xxg : 70.... Xn : 7h, Where all the
x; are distinct. Note: not all identifiers are required to occur.

Example: T = x :int.v : bool, z : int

Adding variables (ll)

Step 2 (ctd’): judgments with contexts: '+~ e: 7

Step 3.1 (axioms): essentially no changes for constant
expressions (just add IN):

Tr—tt:buol FFer:boul

NUM

e U SERRLEL R R

Adding variables (ll)

Step 2 (ctd’): judgments with contexts: '~ e : 7

Step 3.1 (axioms): essentially no changes for constant
expressions (just add I'):

Trl—tt:buul I:Frl—ff:bt_'uzrl

NUM c{....-1,0,1,..)

—n
[= n:int

Novel rule (context lookup): VAR =
=X \T
Step 3.2 (rules for composite expressions): essentialy no

changes (just add I everywhere) side condition

Shortcoming?

Adding variables (ll)

30

Step 2 (ctd’): judgments with contexts: '~ e : 7

Step 3.1 (axioms): essentially no changes for constant
expressions (just add I'):

Trl—tt:buul I:Frl—ff:bt_'uzrl

NUM c{....-1,0,1,..)

—n
[= n:int

Novel rule (context lookup): VAR =
=X \T
Step 3.2 (rules for composite expressions): essentialy no

changes (just add I everywhere) side condition

Shortcoming? cannot add a binding to variables.

Adding variables (lI)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

e:=...|letx=eineend

Step 2: define update operation I'[x : 7] on contexts:
delete any binding for x in T (if existent), then add
binding x : 7. No changes in format of judgments

Step 3: new typing rule:

Adding variables (lI)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

e:=...|letx=eineend

Step 2: define update operation I'[x : 7] on contexts:
delete any binding for x in T (if existent), then add
binding x : 7. No changes in format of judgments

Step 3: new typing rule:

LETFI—E1 e r[)EZfI]FEQZT
[Fletx=eiineend: r

Adding variables (lI)

Extension by let-binding (ML-style)
Step 1: add new composite expression former:

e:=...|letx=eineend

Step 2: define update operation I'[x : 7] on contexts:
delete any binding for x in T (if existent), then add
binding x : 7. No changes in format of judgments

Step 3: new typing rule:

LETFI—E1 e r[){:n]I—EQ:T
[Fletx=eiineend: r

Perform inference (i.e. find 7 if existent) for
@ b:bool~if bthenletx=3inxendelse 4 : 7
@ x:int.y:int-letx=x<yinifxthenyelseOend: r
@ x:int.y:int-letx=x < yinif x then y else xend : r

>

Adding functions (l)

34

Starting point (absyn): two characteristic operations:

Function formation

e:=... |funf(x) =e;in e end

declares function f with formal parameter x and body e;. Name
f may be referred to in e4 (recursion) and e,. Name x only in e;.

Adding functions (l)

35

Starting point (absyn): two characteristic operations:

Function formation

e:=... |funf(x) =e;in e end

declares function f with formal parameter x and body e;. Name
f may be referred to in e4 (recursion) and e,. Name x only in e;.

Function application

Denoted by juxtaposition:e::=... | ee

Adding functions (l)

36

Starting point (absyn): two characteristic operations:

Function formation

e:=... |funf(x) =e;in e end

declares function f with formal parameter x and body e;. Name
f may be referred to in e4 (recursion) and e,. Name x only in e;.

Function application

Denoted by juxtaposition:e::=... | ee

Step 1 (types): Function/arrow type:
TIi=...|T4 — T2

models functions with argument type =4 and return
type 7
Step 2 (judgment form): no change

Adding functions (ll)

37

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:

Adding functions (ll)

38

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:

777
—funf(x)=e;ineyend: 7

FUN

Adding functions (ll)

39

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:
F[f : T-|7 — TE][X) T-|] = I

FUNF —funf(x)=e;ineyend: 7

First hypothesis verifies construction/declaration of
f.

Adding functions (ll)

40

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:
F[f . T{ — Tg][X) T-|] — €1 7o
N [71 ﬁTg].FG‘QZT
—funf(x)=e;ineyend: 7
First hypothesis verifies construction/declaration of
f. Second hypothesis verifies its use. Note that
types 74 and m have to be guessed.
Rule for function application:

Adding functions (ll)

41

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:
F[f . T{ — TE][X) T-|] = I
[[f:71 —m|-6e:7

—funf(x)=e;ineyend: 7
First hypothesis verifies construction/declaration of
f. Second hypothesis verifies its use. Note that
types 74 and m have to be guessed.
Rule for function application:

777
[+ 8162 . To

FUN

APP

Adding functions (ll)

42

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:
F[f . T{ — TE][X) T-|] = I

[[f:71 —m|-6e:7
—funf(x)=e;ineyend: 7
First hypothesis verifies construction/declaration of
f. Second hypothesis verifies its use. Note that
types 74 and m have to be guessed.
Rule for function application:
[—e1:71 — T rl—E‘gZﬂ

[+ 8162 . To

FUN

APP

Adding functions (ll)

43

Aim: prevent application of functions to arguments of wrong
type. And prevent applications e € where e is not a function.

Step 3: Rule for function formation:
F[f . T{ — TE][X) T-|] = I

[[f:71 —m|-6e:7
—funf(x)=e;ineyend: 7
First hypothesis verifies construction/declaration of
f. Second hypothesis verifies its use. Note that
types 74 and m have to be guessed.
Rule for function application:
[—e1:71 — T rl—E‘gZﬂ

[+ 8162 . To

FUN

APP

Exercise (homework)
Define an expression that declares and uses the factorial
function, and write down its typing derivation.

References (cf. ML-primer)

44

Starting point (absyn): three characteristic operations:

Allocation, read, write (assign)

e:=...|alloce|le| e=e

Step 1 (types): 7 ::=... | ref 7 | unit

Type ref - models locations that can hold values

of type .
Step 2 (judgment form): no change

_ [~e:T [~e:refr
Step 3 (rules): ALLOGF —alloc e:ref r READ r=le:r

WHITEFF&:reH [Fey: T

[~ eq4:=65 : unit

Exercise (homework)
Redo factorial, but use a reference to hold the result.

Products/tuples

45

Starting point (absyn): two characteristic operations:

Product formation, projections

Step 1 (types): 7 ::=... | (11,...,7n) (n = 0 amounts to
unit)

Step 2 (judgment form): no change

Step 3 (rules):

Products/tuples

46

Starting point (absyn): two characteristic operations:

Product formation, projections

Step 1 (types): 7 ::=... | (11,...,7n) (n = 0 amounts to
unit)
Step 2 (judgment form): no change

= ; :
Step 3 (rules): PROD . &1 ° T F=en:

Products/tuples

47

Starting point (absyn): two characteristic operations:

Product formation, projections

Step 1 (types): 7 ::=... | (11,...,7n) (n = 0 amounts to
unit)
Step 2 (judgment form): no change
[ey : .. I'F :
Step 3 (rules): PROD &1 - T ©n - T
r|_<E"|en:} {T1Tnp
—e:(Ty.,..., }
PROJ. & Tl Tn) gy

Subtyping (1)

48

Motivating observation

Indeed: any operation we may perform on an expression of the
latter type (i.e. a projection #xe, which is only well-typed if
k < m) is also legal on expressions of the former type.

Subtyping (1)

49

Motivating observation

Indeed: any operation we may perform on an expression of the
latter type (i.e. a projection #xe, which is only well-typed if
k < m) is also legal on expressions of the former type.

General idea

Type 7 is a subtype of o If all values of type = may also count as
values of type o. Operations that handle arguments of type o

must also handle arguments of type 7.

Subtyping (1)

50

Motivating observation

Indeed: any operation we may perform on an expression of the
latter type (i.e. a projection #xe, which is only well-typed if
k < m) is also legal on expressions of the former type.

General idea

Type 7 is a subtype of o if all values of type = may also count as
values of type o. Operations that handle arguments of type o
must also handle arguments of type 7.

Axiomatize this idea in new judgment form subtyping: = <: o.
Again, we justify the axiomatization only informally.

Subtyping (1)

51

How to use subtyping: subsumption rule

r—e:r
SUB T <0

[Fe:o

Models the intuition that a 7-value may be
provided whenever a o-value is expected,
l.e. Interpretation as subset of values.

Subtyping (1)

52

How to use subtyping: subsumption rule

SUBFI—E:T)
T <0
[Fe:o

Models the intuition that a 7-value may be
provided whenever a o-value is expected,
l.e. Interpretation as subset of values.

How to establish subtyping: Separate derivation system.

Pre-order rules

SREFL

T4 <. To To <.Tgy

STRANS
T <. T T{ <. T3

These two rules deal with the base types int, bool. unit.
Next slides: rules that propagate subtpying through the various

type formers.

Subtyping (l1l): propagating through products

53

Products (width): may products

Thought experiment: suppose n < minstead. Take some e
with, say, I' - e : (int, bool). By (hypothetical) rule
SPROD and SuB, have I - e: (int.bool.int). So
[= #3e:Int is well-typed. But this will crash!

Subtyping (l1l): propagating through products

54

Products (width): may products

Thought experiment: suppose n < minstead. Take some e
with, say, I' - e : (int, bool). By (hypothetical) rule
SPROD and SuB, have I - e: (int.bool.int). So
[= #3e:Int is well-typed. But this will crash!

Products: depth

Subtyping (IV): propagating through functions

55

Propagation of subtyping through functions

[- e: —
PFUN AR

(T4 <. T41.To <. T
[-e:01 — o2 1 1hie 2

Return position covariant: weaker guarantee on result

Argument position contravariant: stronger constraint on
arguments (e.g. longer products),

Example: f(x) =letz = #¢xin (even(Z2), Z) end.
=1 {il‘lt} — {bﬂﬂl. int}

[= f:(int,int) — (bool) "

Rule thus correctly sanctions the application
letarg=(3.4)inletres = f arg in #4res end end.

Have PFUN

Subtyping (V): propagating through references

rke:refT???

PREFrPe:refc:r"'

Subtyping (V): propagating through references

57

PRE [Fe:refr

F 77?7 + = o (Invariance
[-e:refo ()

Reason: read/write yield conflicting conditions

Read

Write

. T <O .
motivates - if e evaluates to a
ref - <:ref o

reference holding r values, and any (r-)value we
extract from that location (i.e. le) can also be
interpreted as a o-value, we should be allowed to
consider e as holding o-values, so that ~ le: o.

. aoa <. T .
motivates - if e evaluates to a
ref - <:refo

reference to which we may write a = value

(i,e. = e ref), and if any o-value (say

[= € : o) may be considered a r-value, then we
should be able to assign €' to e, i.e. allow

[+ e:=€ : unit

HW4: type analysis

Differences between FUN and above language:

@ functions declared at top-level, annotated with argument
and return types No higher-order functions

@ products start at 0

Challenge:

@ subtyping destroys property that an expression has at
most one type.

@ rule SuB destroys syntax-directedness, and doesn't make
the expression any smaller. Can apply SuB at any point.

Task:

@ reformulate type syste\m so that it is syntax-directed:
modify the rules such that subtyping is integrated
differently, BUT EXACTLY THE SAME JUDGMENTS
SHOULD BE DERIVABLE using least common
supertypes (“joins”) and greatest common subtype
(“meets”). Implement calculation of meets and joins.

@ use these to implement syntax-directed inference

58

Additional aspects

59

separate name spaces for type definitions vs variables/
functions/procedures =» separate environments (cf Tiger)

when syntax-directedness fails, requiring user-supplied type

annotations helps inference
Example: functions declarations, in particularly (mutually) recursive ones

not covered:
e overloading (multiple typings for operators)
example: arithmetic operations over int, float, double
e additional syntactic category (eg statements): new judgements
e (Casting/coercion
o explicit (ie visible in program syntax): similar to other operators
e implicit: destroys syntax-directness similar to subtyping

o often symbolizes/triggers change of representation (int -> double) that’s
significant for compiler backend

e polymorphism (finite representations for infinitely many typings)

e arrays, class/object systems incl inheritance,
signatures/modules/interfaces

Next ste

0S

Stream of

Source
——

Lexer

Abstract

Tokens
o .

Parser

Syntax Tree
EE——

e IR code generation
e But first: need to learn a bit how data will be laid out in

memory: activation records / frame stack

Semantic
Analysis

IR'! 33

Back End

Target
| O -

Useful homework: read MCIL's sections on TIGER’s

semantic analysis (Chapter 5) and, if possible, TIGER’s
activation record layout (Chapters 6)!

60

Quiz 3: LR(0)

How many states does the LR(0) parse table for the following
grammar have? (You may guess or draw the parse table ;-))

S>BS$ P>¢ E>B
B> idP P> (E) E>B,E
B->id(E]

(cf MCIL, page 85, exercise 3.11)

61

