Topic 4.

Abstract Syntax
Symbol Tables

COS 320

Compiling Techniques

Princeton University
Spring 2016

Lennart Beringer

Abstract Syntax

Can write entire compiler in ML-YACC specification.
e Semantic actions would perform type checking and translation to assembly.
e Disadvantages:

1. File becomes too large, difficult to manage.
2. Program must be processed in order in which 1t 1s parsed. Impossible to do
global/inter-procedural optimization.

Alternative: Separate parsing from remaining compiler phases.

Stream of Abstract

Source Tokens Syntax Tree | Semantic IR Target
— = Lexer = Parser ! - . Back End—————
Analysis

Parse Trees

We have been looking at concrete parse trees, in which
* inner nodes are nonterminals, leaf nodes are terminals
« children are labeled with the symbols in the RHS of the production

stmt = stmt SEMI stmt stmt

stmt =2 ... /| '\

stmt SEMI stmt

Concrete parse trees are inconvenient to use, since they are
cluttered with tokens containing no additional information:
* punctuation symbols (SEMI etc) needed to specify
structure when writing code, but
* the tree structure already describes the program structure

Parse Tree Example

E — ID
E — NUM
E—-LE+FE

ESE-E
ESE*E
ESE/E

2| s,

ID("a") = E ID("b") = E

|

NUM(4) NUM(4)

Type checker does not need “(” or ©)” or ;™

Abstract parse trees (aka abstract syntac tree — AST)

* like concrete parse trees (e.g. inductive datatype, generated as
semantic action by YACC)

* each syntactic category (expressions, statements,..) is represented
as a separate datatype, with one constructor for each formation

* redundant punctuation symbols are left out

Abstract parse trees (aka abstract syntac tree — AST)

* like concrete parse trees (e.g. inductive datatype, generated as
semantic action by YACC)

* each syntactic category (expressions, statements,..) is represented
as a separate datatype, with one constructor for each formation

* redundant punctuation symbols are left out

CompoundStmt datatype stmt =
CompoundStmt of stmt * stmt
/ \ | AssignStmt of string * expr;
AssignStmt AssignStmt
/ \ / \ datatype expr =
‘@’ NumExpr(3) ‘b” NumExpr(4) NumExpr of int

| binopExpr of expr * binop * expr;

Abstract parse trees (aka abstract syntac tree — AST)

* like concrete parse trees (e.g. inductive datatype, generated as
semantic action by YACC)

* each syntactic category (expressions, statements,..) is represented
as a separate datatype, with one constructor for each formation

* redundant punctuation symbols are left out

CompoundStmt datatype stmt =
CompoundStmt of stmt * stmt
/ \ | AssignStmt of string * expr;
AssignStmt AssignStmt
/ \ / \ datatype expr =
‘@’ NumExpr(3) ‘b” NumExpr(4) NumExpr of int

| binopExpr of expr * binop * expr;

« First approximation: nonterminal <> synt. category; CFG rule < constructor
» But: AST is internal interface between components of compiler, so AST
design is up to compiler writer, not the language designer; may deviate from
organization suggested by grammar/syntax

7

Semantic Analysis: Symbol Tables

Stream of Abstract

Source Tokens Syntax Tree | Semantic IR Target
—— Lexer « Parser - - . «~ Back End | AEet,
Analysis

e Semantic Analysis Phase:

— Type check AST to make sure each expression has correct type
— Translate AST mto IR trees

e Main data structure used by semantic analysis: symbol table

— Contams entries mapping 1dentifiers to their bindings (e.g. type)

— As new type, variable, function declarations encountered, symbol table aug-
mented with entries mapping identifiers to bindings.

— When 1identifier subsequently used, symbol table consulted to find info about
identifier.

— When 1dentifier goes out of scope, entries are removed.

Symbol Table Example

G an = {” — f”f-}

function f (b:int, c:int)
= (print_int (btc); - tomemmem
letvarj:==b__
vara = “x’ — ..
in print (a);
print_int (j)
end: - ot it it i)
print_int (a) e

P _

{j — int,b— int,c — int,a — int}

la — string, j — int, b — int, ¢ — int,a — int}

Symbol Table Implementation

10

e Imperative Style: (side effects)
— Global symbol table

— When begmning-ot-scope entered, entries added to table using side-eftects. (old
table destroyed)

— When end-of-scope reached, auxiliary info used to remove previous additions.
(old table reconstructed)

e Functional Style: (no side effects)

— When begimning-of-scope entered, new environment created by adding to old
one, but old table remains mntact.

— When end-of-scope reached, retrieve old table.

Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.
e Hash Tables - an array of buckets

e Bucket - linked list of entries (each entry maps identifier to binding)

0 1 2 . n-1
L J
a->int c->string
) 1
b->1mnt d->int

' '

e Suppose we with to lookup entry for 1d 7 in symbol table:
1. Apply hash function to key i to get array element j € [0, — 1].

2. Traverse bucket 1n table[7] 1n order to find binding b.
(table[x]: all entries whose keys hash to)

Functional Symbol Tables

12

Hash tables not efficient for functional symbol tables.
Insert a — string = copy array, share buckets:

Old Symbol Table Array New Symbol Table Array
1 1

'

a -> int a -> string

Not feasible to copy array each time entry added to table.

Association list (cf HW 1) not efficient (lookup and delete linear)

Functional Symbol Tables

13

Better method: use binary search trees (BSTs).
e Functional additions easy.
e Need “less than™ ordering to build tree.

— Each node contains mapping from identifier (key) to binding.
— Use string comparison for “less than™ ordering.

— For all nodes n € L, key(n) < key(/)
For all nodes n € R, key(n) >= key(/)

(1)
\/

.\
L\ R\

Functional Symbol Table using BST: lookup

14

Use the “less than” relation to navigate down the tree

7N

Functional Symbol Table using BST: insertion

/

N\

Insertion of z->int; 1. create node

Functional Symbol Table using BST: insertion

/7 N\ AN

Insertion of z->int: 1. create node
2. ‘“search” for z in old tree; copy ancestor nodes

Functional Symbol Table using BST: insertion

\
\ L—

Insertion of z->int: 1. create node
2. ‘“search” for z in old tree; copy ancestor nodes
3. insert links to siblings in original (share subtree)

