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Abstract Syntax
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Parse Trees

We have been looking at concrete parse trees, in which

• inner nodes are nonterminals, leaf nodes are terminals

• children are labeled with the symbols in the RHS of the production

Concrete parse trees are inconvenient to use, since they are 

cluttered with tokens containing no additional information:

• punctuation symbols (SEMI etc) needed to specify 

structure when writing code, but

• the tree structure already describes the program structure

stmt

stmt stmtSEMI
: :

stmt stmt SEMI stmt

stmt…
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Parse Tree Example
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Abstract parse trees (aka abstract syntac tree – AST)

• like concrete parse trees (e.g. inductive datatype, generated as 

semantic action by YACC)

• each syntactic category (expressions, statements,..) is represented 

as a separate datatype, with one constructor for each formation 

• redundant punctuation symbols are left out
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Abstract parse trees (aka abstract syntac tree – AST)

• like concrete parse trees (e.g. inductive datatype, generated as 

semantic action by YACC)

• each syntactic category (expressions, statements,..) is represented 

as a separate datatype, with one constructor for each formation 

• redundant punctuation symbols are left out

CompoundStmt

AssignStmt

“a” NumExpr(3)

AssignStmt

“b” NumExpr(4)

datatype stmt =

CompoundStmt of stmt * stmt

| AssignStmt of string * expr;

datatype expr = 

NumExpr of int

| binopExpr of expr * binop * expr;
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Abstract parse trees (aka abstract syntac tree – AST)

• like concrete parse trees (e.g. inductive datatype, generated as 

semantic action by YACC)

• each syntactic category (expressions, statements,..) is represented 

as a separate datatype, with one constructor for each formation 

• redundant punctuation symbols are left out

CompoundStmt

AssignStmt

“a” NumExpr(3)

AssignStmt

“b” NumExpr(4)

• First approximation: nonterminal  synt. category; CFG rule  constructor

• But: AST is internal interface between components of compiler, so AST 

design is up to compiler writer, not the language designer; may deviate from 

organization suggested by grammar/syntax

datatype stmt =

CompoundStmt of stmt * stmt

| AssignStmt of string * expr;

datatype expr = 

NumExpr of int

| binopExpr of expr * binop * expr;



8

Semantic Analysis: Symbol Tables
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Symbol Table Example

function f (b:int, c:int) 

= (print_int (b+c);

let var j:= b

var a := “x”

in print (a);

print_int (j)

end;

print_int (a)

)
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Symbol Table Implementation
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Imperative Symbol Tables
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Functional Symbol Tables

Association list (cf HW 1) not efficient (lookup and delete linear) 
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Functional Symbol Tables
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Functional Symbol Table using BST: lookup

Use the “less than” relation to navigate down the tree

c -> real

f -> int

d -> string s -> string

t -> int
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Functional Symbol Table using BST: insertion

c -> real

f -> int

d -> string s -> string

t -> int

z -> int

Insertion of z-> int: 1. create node
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Functional Symbol Table using BST: insertion

c -> real

f -> int

d -> string s -> string

t -> int

f -> int

t -> int

z -> int

Insertion of z-> int: 1. create node

2. “search” for z in old tree; copy ancestor nodes
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Functional Symbol Table using BST: insertion

c -> real

f -> int

d -> string s -> string

t -> int

f -> int

t -> int

z -> int

Insertion of z-> int: 1. create node

2. “search” for z in old tree; copy ancestor nodes

3. insert links to siblings in original (share subtree) 


