
1

Topic 4: Abstract Syntax

Symbol Tables

COS 320

Compiling Techniques

Princeton University 
Spring 2016

Lennart Beringer



2

Abstract Syntax



3

Parse Trees

We have been looking at concrete parse trees, in which

• inner nodes are nonterminals, leaf nodes are terminals

• children are labeled with the symbols in the RHS of the production

Concrete parse trees are inconvenient to use, since they are 

cluttered with tokens containing no additional information:

• punctuation symbols (SEMI etc) needed to specify 

structure when writing code, but

• the tree structure already describes the program structure

stmt

stmt stmtSEMI
: :

stmt stmt SEMI stmt

stmt…



4

Parse Tree Example



5

Abstract parse trees (aka abstract syntac tree – AST)

• like concrete parse trees (e.g. inductive datatype, generated as 

semantic action by YACC)

• each syntactic category (expressions, statements,..) is represented 

as a separate datatype, with one constructor for each formation 

• redundant punctuation symbols are left out



6

Abstract parse trees (aka abstract syntac tree – AST)

• like concrete parse trees (e.g. inductive datatype, generated as 

semantic action by YACC)

• each syntactic category (expressions, statements,..) is represented 

as a separate datatype, with one constructor for each formation 

• redundant punctuation symbols are left out

CompoundStmt

AssignStmt

“a” NumExpr(3)

AssignStmt

“b” NumExpr(4)

datatype stmt =

CompoundStmt of stmt * stmt

| AssignStmt of string * expr;

datatype expr = 

NumExpr of int

| binopExpr of expr * binop * expr;



7

Abstract parse trees (aka abstract syntac tree – AST)

• like concrete parse trees (e.g. inductive datatype, generated as 

semantic action by YACC)

• each syntactic category (expressions, statements,..) is represented 

as a separate datatype, with one constructor for each formation 

• redundant punctuation symbols are left out

CompoundStmt

AssignStmt

“a” NumExpr(3)

AssignStmt

“b” NumExpr(4)

• First approximation: nonterminal  synt. category; CFG rule  constructor

• But: AST is internal interface between components of compiler, so AST 

design is up to compiler writer, not the language designer; may deviate from 

organization suggested by grammar/syntax

datatype stmt =

CompoundStmt of stmt * stmt

| AssignStmt of string * expr;

datatype expr = 

NumExpr of int

| binopExpr of expr * binop * expr;



8

Semantic Analysis: Symbol Tables



9

Symbol Table Example

function f (b:int, c:int) 

= (print_int (b+c);

let var j:= b

var a := “x”

in print (a);

print_int (j)

end;

print_int (a)

)



10

Symbol Table Implementation



11

Imperative Symbol Tables



12

Functional Symbol Tables

Association list (cf HW 1) not efficient (lookup and delete linear) 



13

Functional Symbol Tables



14

Functional Symbol Table using BST: lookup

Use the “less than” relation to navigate down the tree

c -> real

f -> int

d -> string s -> string

t -> int



15

Functional Symbol Table using BST: insertion

c -> real

f -> int

d -> string s -> string

t -> int

z -> int

Insertion of z-> int: 1. create node



16

Functional Symbol Table using BST: insertion

c -> real

f -> int

d -> string s -> string

t -> int

f -> int

t -> int

z -> int

Insertion of z-> int: 1. create node

2. “search” for z in old tree; copy ancestor nodes



17

Functional Symbol Table using BST: insertion

c -> real

f -> int

d -> string s -> string

t -> int

f -> int

t -> int

z -> int

Insertion of z-> int: 1. create node

2. “search” for z in old tree; copy ancestor nodes

3. insert links to siblings in original (share subtree) 


