Topic 3: Parsing and Yaccing

COS 320

Compiling Techniques

Princeton University Spring 2016

Lennart Beringer

The Compiler

- Lexical Analysis: Break into tokens (think words, punctuation)
- Syntax Analysis: Parse phrase structure (think document, paragraphs, sentences)
- Semantic Analysis: Calculate meaning

Role of parser

Lexer partitioned document into stream of tokens.
But not all token lists represent programs.

- verify that stream of tokens is valid according to the language definition
- report violations as (informative) syntax error and recover
- build abstract syntax tree (AST) for use in next compiler phase

Syntactical Analysis

- each language definition has rules that describe the syntax of wellformed programs.
- format of the rules: context-free grammars
- why not regular expressions/NFA's/DFA's?

Syntactical Analysis

- each language definition has rules that describe the syntax of wellformed programs.
- format of the rules: context-free grammars
- why not regular expressions/NFA's/DFA's?
- source program constructs have recursive structure:
digits $=[0-9]+;$
expr = digits | "(" expr "+" expr ")"

Syntactical Analysis

- each language definition has rules that describe the syntax of wellformed programs.
- format of the rules: context-free grammars
- why not regular expressions/NFA's/DFA's?
- source program constructs have recursive structure:

$$
\begin{gathered}
\text { digits = }[0-9]+; \\
\text { expr = digits | "(" expr "+" expr ")" }
\end{gathered}
$$

- finite automata can't recognize recursive constructs, so cannot ensure expressions are well-bracketed: a machine with N states cannot remember parenthesis-nesting depth greater than N
- CFG's are more powerful, but also more costly to implement

Context-Free Grammar

Regular Expressions - describe lexical structure of tokens.

Context-Free Grammars - describe syntactic nature of programs.

Context-Free Grammars: definitions

- language: set of strings
- string: finite sequence of symbols taken from finite alphabet

Regular expressions and CFG's both describe languages, but over different alphabets

	Lexical analysis	Syntax analysis
symbols/alphabet	ASCII	token
strings	lists of tokens	lists of phrases
language	set of (legal) token sequences	set of (legal) phrase sequences ("programs")

Context-free grammars versus regular expressions

CFG's strictly more expressive than RE's:
Any language recognizable/generated by a RE can also be recognized/generated by a CFG, but not vice versa.

Also known as Backus-Naur Form (BNF, Algol 60)

Context-Free Grammars: definition

ACFG consists of

- a finite set $\boldsymbol{N}=\mathrm{N}_{1}, \ldots, N_{k}$ of non-terminal symbols, one of which is singled out as the start symbol
- a finite set $\boldsymbol{T}=T_{1}, \ldots, T_{m}$ of terminal symbols (representing token types) - a finite set of productions LHS \longrightarrow RHS where LHS is a single non-terminal, and RHS is a list of terminals and non-terminals

Each production specifies one way in which terminals and nonterminals may be combined to form a legal (sub)string.

Recursion (e.g. well-bracketing) can be modeled by referring to the LHS inside the RHS:

$\mathrm{stmt} \longrightarrow \mathrm{IF} \exp$ THEN stmt ELSE stmt

The language recognized by the CFG is the set of terminal-only strings derivable from the start symbol .

CFG's: derivations

1. Start with start symbol
2. While the current string contains a non-terminal N , replace it by the RHS of one of the rules for N .

Non-determinism

- Choice of non-terminal N to be replaced in each step
- Choice of production/RHS once N has been chosen.

Acceptance of a string is independent of these choices (cf. NFA), so a string may have multiple derivations.

Notable derivation strategies

- left-most derivation: in each step, replace the left-most non-terminal
- right-most derivation: ...
(In both cases, use the chosen symbol's first rule)

Example (cf HW1)

Nonterminals

stmt /*statements/*
expr /*expressions*/
expr_list/*expression lists*/
Terminals : tokens
SEMI
ID
ASSIGN
LPAREN
RPAREN
NUM
PLUS
PRINT
COMMA

Productions

expr $\longrightarrow \mathrm{ID}$
expr $\longrightarrow \mathrm{NUM}$
expr \longrightarrow expr + expr
expr \longrightarrow (stmt, expr)
expr_list \longrightarrow expr
expr_list \longrightarrow expr_list, expr

Example: leftmost Derivation for a:=12; print(23)

Show that the following token sequence ID := NUM; PRINT(NUM) is a legal phrase
ID ASSIGN NUM SEMI PRINT LPAREN NUM RPAREN

Productions

```
stmt \longrightarrow stmt; stmt
stmt \longrightarrowID := expr
stmt \longrightarrow print (expr_list)
```


expr \longrightarrow expr + expr
expr \longrightarrow (stmt, expr)
expr_list \longrightarrow expr
expr_list \longrightarrow expr_list, expr

Example: leftmost Derivation for $\mathrm{a}:=12$; print(23)

Show that the following token sequence
ID := NUM; PRINT(NUM) is a legal phraseID ASSIGN NUM SEMI PRINT LPAREN NUM RPAREN
stmt
stmt SEMI stmt
ID ASSIGN expr SEMI stmt
ID ASSIGN NUM SEMI stmt
ID ASSIGN NUM SEMI PRINT LPAREN expr list RPAREN
ID ASSIGN NUM SEMI PRINT LPAREN expr RPAREN
ID ASSIGN NUM SEMI PRINT LPAREN NUM RPAREN

Example: rightmost Derivation for $\mathrm{a}:=12$; print(23)

Show that the following token sequence ID := NUM; PRINT(NUM) is a legal phrase ID ASSIGN NUM SEMI PRINT LPAREN NUM RPAREN stmt
stmt SEMI stmt stmt SEMI PRINT LPAREN expr list RPAREN stmt SEMI PRINT LPAREN expr RPAREN
stmt SEMI PRINT LPAREN NUM RPAREN
ID ASSIGN expr SEMI PRINT LPAREN NUM RPAREN
ID ASSIGN NUM SEMI PRINT LPAREN NUM RPAREN

Productions

Parse tree: graphical representation of derivation results

- Root: start symbol
- Inner nodes labeled with non-terminals; \#branches according to chosen production
- Leaf nodes labeled with terminals

Example (parse tree of previous CFG):

Different derivations may or may not yield different parse trees.

Ambiguous Grammars

A grammar is ambiguous is it can derive a string of tokens with two or more different parse trees

Example?

Ambiguous Grammars

A grammar is ambiguous is it can derive a string of tokens with two or more different parse trees

Example?

Non-Terminals:

```
expr : Expression
```

Terminals (tokens):
ID
NUM
PLUS "+"
MULT "*"
expr $\rightarrow I D$
expr \rightarrow NUM
expr \rightarrow expr + expr
expr \rightarrow expr * expr

Ambiguous Grammars

A grammar is ambiguous is it can derive a string of tokens with two or more different parse trees

Example?

Non-Terminals:
Consider: $4+5 * 6$
expr : Expression
Terminals (tokens):
ID
NUM
PLUS "+"
MULT "*"
expr $\rightarrow I D$
expr $\rightarrow N U M$
expr \rightarrow expr + expr
expr \rightarrow expr * expr

Ambiguous Grammars

A grammar is ambiguous is it can derive a string of tokens with two or more different parse trees

Example?

Non-Terminals:
expr : Expression
Terminals (tokens):
ID

NUM
PLUS "+"
MULT "*"
expr $\rightarrow I D$
expr \rightarrow NUM
expr \rightarrow expr + expr
expr \rightarrow expr * expr

Ambiguous Grammars

- Problem: compilers use parse trees to interpret meaning of parsed expressions.
- Different parse trees may have different meanings, resulting in different interpreted results.
- For example, does $4+5 * 6$ equal 34 or 54 ?

Ambiguous Grammars

- Problem: compilers use parse trees to interpret meaning of parsed expressions.
- Different parse trees may have different meanings, resulting in different interpreted results.
- For example, does $4+5 * 6$ equal 34 or 54 ?
- Solution: rewrite grammar to eliminate ambiguity.
- If language doesn't have unambiguous grammar, then you have a bad programming language.
- Operators have a relative precedence. We say some operands bind tighter than others. ("*" binds tighter than "+")
- Operators with the same precedence must be resolved by associativity. Some operators have left associativity, others have right associativity.
plus, minus, times,...
exponentiation,...

Ambiguous Grammars

Operators with same precedence should have same associativity Why?
Example: suppose plus right-assoc, minus left-assoc, equal precedence

$$
\begin{gathered}
a-b-c+d+e \\
(a-b)-c+(d+e)
\end{gathered}
$$

Conflict: $\quad((a-b)-c)+(d+e)$ vs. $(a-b)-(c+(d+e))$

$$
\begin{array}{ll}
((10-4)-3)+(20+15)= & (10-4)-(3+(20+15))= \\
(6-3)+35=3+35=38 & 6-(3+35)=6-38=-32
\end{array}
$$

Next: how to rewrite an ambiguous grammar

Ambiguous Grammars

Non-Terminals:

```
expr : Expression
term : Term (add)
fact : Factor (mult)
```

Terminals (tokens):
expr \rightarrow expr + term
expr \rightarrow term
term \rightarrow term $*$ fact
term \rightarrow fact
fact $\rightarrow I D$
fact \rightarrow NUM
$4+5 * 6$
NUM (4) PLUS NUM (5) MULT NUM (6)

End-Of-File Marker

- Parse must also recognize the End-of-File (EOF).
- EOF marker in the grammar is "\$"
- Introduce new start symbol and the production $E^{\prime} \rightarrow E \$$

Grammars and Lexical Analysis

CFG's are sufficiently powerful to describe regular expressions.

Example: language $(\mathrm{a} \mid \mathrm{b})^{*}$ abb is described by the following CFG

```
W}\longrightarrow\textrm{aW}\quad\textrm{X}\longrightarrow\textrm{bY
W\longrightarrowbW
Y\longrightarrowb
(W start symbol)
```

So can combine lexical and syntactic analysis (parsing) into one module

+ ok for small languages, with simple/few RE's and syntactic grammar
- regular expression specification arguably more concise
- separating phases increases compiler modularity

Context-Free Grammars versus REs (I)

Claim: context-free grammars are strictly more powerful that RE's (and hence NFA's and DFA's).

Part 1: any language that can be generated using RE's can be generated by a CFG.
Proof: give a translation that transforms an RE R into a CFG G(R) such that $L(R)=L(G(R))$.

Part2: define a grammar G such that there is no finite automaton
F with $L(G)=L(F)$.

Context Free Grammars and REs (II)

Part 1: any language that can be generated using RE's can be generated by a CFG.
Proof: give a translation that transforms an RE R into a CFG $G(R)$ such that $L(R)=L(G(R))$.

Construction of the translation by induction over structure of RE's:

1. Introduce one non-terminal (R) for each subterm R of the RE

Context Free Grammars and REs (II)

Part 1: any language that can be generated using RE's can be generated by a CFG.
Proof: give a translation that transforms an RE R into a CFG $G(R)$ such that $L(R)=L(G(R))$.

Construction of the translation by induction over structure of RE's:

1. Introduce one non-terminal (R) for each subterm R of the RE
2. Rules (base cases):
i. Symbol (a): $R \longrightarrow a$
ii. Epsilon($($): $R \longrightarrow \epsilon$

Context Free Grammars and REs (II)

Part 1: any language that can be generated using RE's can be generated by a CFG.
Proof: give a translation that transforms an RE R into a CFG $G(R)$ such that $L(R)=L(G(R))$.

Construction of the translation by induction over structure of RE's:

1. Introduce one non-terminal (R) for each subterm R of the RE
2. Rules (base cases):
i. Symbol (a): $R \longrightarrow a$
ii. Epsilon($($): $R \longrightarrow \epsilon$
3. Rules (inductive cases):
i. Alternation $(\mathrm{M} \mid \mathrm{N}): R \rightarrow M$
ii. Concatenation $(M N): R \longrightarrow M N$
iii. Kleene closure (M *): $\mathrm{R} \longrightarrow \mathrm{MR}$

Context-Free Grammar with no RE/FA

0

Context-Free Grammar with no RE/FA

Well-bracketing!

$S \rightarrow(S)$
 $S \longrightarrow \varepsilon$

Proof by contradiction:

assume there's a NFA/DFA accepting the language

Either one is fine!

- FA must have finite number of states, say \mathbf{N}
- FA must "remember" number of "(" to generate equally many ")"
- At or before seeing the $\mathbf{N}+1$ st "(", FA must revisit a state already traversed, say s
- s represents two different counts of ")", both of which must be accepte
- One count will be invalid, ie not match up the number of "("'s seen.

Grammars versus automata models (for the curious)

Q: is there a class of grammars capturing exactly the power of RE's?
A: yes, the "regular, right-linear, finite state grammars" for example
non-terminals occur only in
at most one non-terminal in each RHS

Q: is there an automaton model that precisely captures contextfree grammars?
A: yes, "push-down automata" (ie automata with a stack)
Q: we use context-free grammars to specify parsing. Are there grammars that are not context-free?
A: yes, context-sensitive grammars, for example (LHS of productions are strings with >0 nonterminals and $>=0$ terminals)

Parsing

Front End:

- Lexical Analysis - Break source into tokens.
- Syntax Analysis - Parse phrase structure.
- Semantic Analysis - Calculate meaning.

Our Compiler:

Parser Functions:

- Verify that token stream is valid.
- If it is not valid, report syntax error and recover.
- Build Abstract Syntax Tree (AST).

Outline

- Recursive Descent Parsing
- Shift-Reduce Parsing
- ML-Yacc
- Recursive Descent Parser Generation

Recursive Descent Parsing

Reminder: context-free grammars: symbols (terminals, non-terminals), productions (rules), derivations, ...

Many CFG's can be parsed with an algorithm called recursive descent:

- one function for each non-terminal
- each production rule yields one clause in the function for the LHS symbol
- functions (possibly mutually) recursive

Other names for recursive descent:

- predictive parsing: rule selection is based on next symbol(s) seen
- top-down parsing (algorithm starts with initial symbol)
- LL(1) parsing (Left-to-right parsing, Leftmost derivation, 1 symbol look-ahead)

Recursive descent: example

Grammar:

non-terminals: S, L, E
terminals: IF (if), THEN(then), ELSE (else), BEGIN (begin),
$\operatorname{PRINT}($ print $), ~ E N D(e n d), \operatorname{SEMI}(;), ~ N U M, ~ E Q(=)$
$\mathrm{S} \rightarrow$ if E then S else S
$\mathrm{S} \rightarrow$ begin S L

$\mathrm{L} \rightarrow$ end
$\mathrm{L} \rightarrow$; S L
$\mathrm{E} \rightarrow$ num $=$ num

```
val tok = ref (getToken())
fun advance() = tok := getToken()
fun eat(t) = if (!tok = t) then advance() else error()
fun S() = case !tok of
    IF => (eat(IF); E(); eat(THEN); S();
                                eat(ELSE); S())
    BEGIN => (eat(BEGIN); S(); L())
    PRINT => (eat(PRINT); E())
and L() = case !tok of
    END => (eat(END))
    SEMI => (eat(SEMI); S(); L())
and E() =
    (eat(NUM); eat(EQ); eat(NUM))
```


Recursive descent: another example

Grammar:

$$
\begin{array}{ll}
\mathrm{A} \rightarrow \mathrm{~S} \text { EOF } & \mathrm{E} \rightarrow i d \\
\mathrm{~S} \rightarrow i d:=\mathrm{E} & \mathrm{E} \rightarrow \text { num } \\
\mathrm{S} \rightarrow \operatorname{print}(\mathrm{~L}) & \mathrm{L} \rightarrow \mathrm{E} \\
& \mathrm{~L} \rightarrow \mathrm{~L}, \mathrm{E}
\end{array}
$$

```
fun A() = (S(); eat(EOF))
and \(S()=\) case !tok of
    ID => (eat(ID); eat(ASSIGN); E())
    PRINT => (eat(PRINT); eat(LPAREN);
    L(); eat(RPAREN))
and \(E()=\) case !tok of
    ID => (eat (ID))
    NUM => (eat (NUM))
and \(L()=\) case !tok of
    ID => (?????)
    NUM => (?????)
```


The Problem

- If $!$ tok $=\mathrm{ID}$, parser cannot determine which production to use:

$$
\begin{array}{lc}
\mathrm{L} \rightarrow \mathrm{E} & (\mathrm{E} \text { could be ID) } \\
\mathrm{L} \rightarrow \mathrm{~L}, \mathrm{E} & (\mathrm{~L} \text { could be ID })
\end{array}
$$

- Predictive parsing only works for grammars where first terminal symbol of each subexpression provides enough information to choose which production to use.
- Can write predictive parser by eliminating left recursion.
$\mathrm{L} \rightarrow \mathrm{E} \quad \mathrm{L} \rightarrow \mathrm{EM}$
$\mathrm{L} \rightarrow \mathrm{L}, \mathrm{E}$
$\begin{array}{ll}\Longrightarrow \quad & \mathrm{M} \rightarrow \mathrm{EM} \\ \mathrm{M} \rightarrow \epsilon\end{array}$
and $L()=$ case !tok of
ID => (E (); M())
NUM => (E (); M())
and $M()=$ case !tok of
COMMA => (eat (COMMA); E(); M())
RPAREN => ()

The Problem

- If $!$ tok $=\mathrm{ID}$, parser cannot determine which production to use:

$$
\begin{array}{lr}
\mathrm{L} \rightarrow \mathrm{E} & \text { (E could be ID) } \\
\mathrm{L} \rightarrow \mathrm{~L}, \mathrm{E} & (\mathrm{~L} \text { could be ID) }
\end{array}
$$

- Predictive parsing only works for grammars wher first terminal symbol of each subexpression provides enough information to choose which production to use.
- Can write predictive parser by eliminating left recursion.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{L} \rightarrow \mathrm{E} \\
\mathrm{~L} \rightarrow \mathrm{~L}, \mathrm{E}
\end{array} \\
& \begin{array}{ll}
& L \rightarrow E M \\
& M-\amalg E M \\
& M \rightarrow \epsilon
\end{array} \\
& \text { and } L()=\text { case !tok of } \\
& \text { ID } \quad=>(E() ; M()) \\
& \text { NUM } \quad=\text { (E(); M()) }
\end{aligned}
$$

RPAREN is the (only) nonterminal that may follow a string derivable from M (why?...). Seeing RPAREN thus indicates we should use rule $\mathrm{M} \longrightarrow \varepsilon$.

Limitation of Recursive Descent Parsing

- Based on current function and next token-type in input stream, parser must predict which production to use.
- If $!$ tok $=\mathrm{ID}$, parser cannot determine which production to use:

$$
\begin{array}{lc}
\mathrm{L} \rightarrow \mathrm{E} & (\mathrm{E} \text { could be ID) } \\
\mathrm{L} \rightarrow \mathrm{~L}, \mathrm{E} & (\mathrm{~L} \text { could be ID) }
\end{array}
$$

- Predictive parsing only works for grammars where first terminal symbol of each subexpression provides enough information to choose which production to use.
Sometimes, we can modify a grammar so that is amenable to predictive parsing without changing the language recognized, for example by replacing left recursion by right recursion.

Need algorithm that

- decides if a grammar is suitable for recursive descent parsing, and
- if so, calculates the parsing table, ie a table indicating which production to apply in each situation, given the next terminal in the token stream

> Key ingredient: analysis of first and follow.

Formal Techniques for predictive parsing

Let γ range over strings of terminals and nonterminals from our grammar.

For each y that is a RHS of one of the rules, must determine the set of all terminals that can begin a string derivable from γ : First($\mathrm{\gamma})$

Examples: First (id :=E) = \{ id \} for grammar on previous slide.

Formal Techniques for predictive parsing

Let γ range over strings of terminals and nonterminals from our grammar.
(i.e. RHS of grammar rules)

FIRST(y)

For each y that is a RHS of one of the rules, must determine the set of all terminals that can begin a string derivable from γ : First($\mathrm{\gamma})$

Examples: First (id := E) = \{id \} for grammar on previous slide.

First ($\left.T^{*} F\right)=\{$ id, num, LPAREN $\}$ for

Formal Techniques for predictive parsing

Let y range over strings of terminals and nonterminals from our grammar. FIRST(y)
(i.e. RHS of grammar rules)

For each y that is a RHS of one of the rules, must determine the set of all terminals that can begin a string derivable from γ : First(γ)

Examples: First (id := E) $=\{$ id $\}$ for grammar on previous slide.

First (T^{*} F $)=\{$ id, num, LPAREN $\}$ for

Predictive parsing impossible whenever there are productions $X \longrightarrow \mathrm{Y} 1$ and $\mathrm{X} \longrightarrow \mathrm{\gamma} 2$ such that First (Y 1) and First (y 2) overlap: can't decide which rule to use!

Formal Techniques for predictive parsing

Consider y = X Y Z where $S \rightarrow X Y Z$ $\xrightarrow[Y]{Y} \rightarrow \ldots$

Then, First (S) should contain First (Z), because Y and X can derive ε.

Formal Techniques for predictive parsing

NULLABLE(N)

Consider $\mathrm{Y}=\mathrm{X}$ Y Z where
$S \longrightarrow X Y Z$

Then, First (S) should contain First (Z), because Y and X can derive ε.

Hence, for calculating First sets we need to determine which nonterminals N can derive the empty string ε : Nullable(N).

Here, Y and (hence) X are nullable.

Extension to strings: γ nullable if all symbols in γ are nullable.

Computation of First

- If T is a terminal symbol, then $\operatorname{first}(T)=\{T\}$.

Computation of First

- If T is a terminal symbol, then $\operatorname{first}(T)=\{T\}$.
- If X is a non-terminal and $X \rightarrow Y_{1} Y_{2} Y_{3} \ldots Y_{n}$, then

Computation of First

- If T is a terminal symbol, then $\operatorname{first}(T)=\{T\}$.
- If X is a non-terminal and $X \rightarrow Y_{1} Y_{2} Y_{3} \ldots Y_{n}$, then

```
first}(\mp@subsup{Y}{1}{})\in\operatorname{first}(X
first}(\mp@subsup{Y}{2}{})\in\operatorname{first}(X),\mathrm{ if }\mp@subsup{Y}{1}{}\mathrm{ is nullable
first(Y}\mp@subsup{Y}{3}{})\in\operatorname{first}(X),\mathrm{ if }\mp@subsup{Y}{1}{},\mp@subsup{Y}{2}{}\mathrm{ is nullable
:
first}(\mp@subsup{Y}{n}{})\in\operatorname{first}(X)\mathrm{ , if }\mp@subsup{Y}{1}{},\mp@subsup{Y}{2}{},\ldots.\mp@subsup{Y}{n-1}{}\mathrm{ is
nullable
```


Computation of First

- If T is a terminal symbol, then $\operatorname{first}(T)=\{T\}$.
- If X is a non-terminal and $X \rightarrow Y_{1} Y_{2} Y_{3} \ldots Y_{n}$, then

```
first(}(\mp@subsup{Y}{1}{})\in\operatorname{first}(X
first}(\mp@subsup{Y}{2}{})\in\operatorname{first}(X)\mathrm{ , if }\mp@subsup{Y}{1}{}\mathrm{ is nullable
first(Y}\mp@subsup{Y}{3}{})\in\operatorname{first}(X),\mathrm{ if }\mp@subsup{Y}{1}{},\mp@subsup{Y}{2}{}\mathrm{ is nullable
:
first}(\mp@subsup{Y}{n}{})\in\operatorname{first}(X)\mathrm{ , if }\mp@subsup{Y}{1}{},\mp@subsup{Y}{2}{},\ldots.\mp@subsup{Y}{n-1}{}\mathrm{ is
nullable
```

Similarly: first (y) where $\mathrm{\gamma}$ is a string of terminals and nonterminals.

Formal Techniques for predictive parsing

FOLLOW(N)

For each nonterminal \mathbf{N}, we also must determine the set of all terminal symbols that can immediately follow \mathbf{N} in a derivation: Follow(N). In particular, must know which terminals may follow a nullable nonterminal.

Formal Techniques for predictive parsing

FOLLOW(N)

For each nonterminal N , we also must determine the set of all terminal symbols t that can immediately follow N in a derivation: Follow(N). In particular, must know which terminals may follow a nullable nonterminal.

Example (S start symbol):

- Follow (X) contains t, due to $S \longrightarrow P X t$

Formal Techniques for predictive parsing

FOLLOW(N)

For each nonterminal N , we also must determine the set of all terminal symbols that can immediately follow N in a derivation: Follow(N). In particular, must know which terminals may follow a nullable nonterminal.

Example (S start symbol):

- Follow (X) contains t, due to $S \longrightarrow P X t$
- hence Follow (P) contains t, since X is nullable
- in case P is also nullable, First (PXt) and hence First(S) contain t

Formal Techniques for predictive parsing

FOLLOW(N)

For each nonterminal N , we also must determine the set of all terminal symbols t that can immediately follow N in a derivation: Follow(N). In particular, must know which terminals may follow a nullable nonterminal.

Example (S start symbol):

- Follow (X) contains t, due to $S \longrightarrow P X t$
- hence Follow (P) contains t, since X is nullable
- in case P is also nullable, First (PXt) and hence First(S) contain t
- hence Follow (Y) contains t , due to $\mathrm{X} \longrightarrow \mathrm{Y}$

Computation of Follow

Let X and Y be nonterminals, and $\gamma, \gamma 1$ strings of terminals and nonterminals.

- whenever the grammar contains a production $X \longrightarrow \mathrm{YY}$: follow $(X) \subseteq$ follow (Y)

Computation of Follow

Let X and Y be nonterminals, and $\gamma, \gamma 1$ strings of terminals and nonterminals.

- whenever the grammar contains a production $X \longrightarrow \mathrm{YY}$:
follow $(X) \subseteq$ follow (Y)
- whenever the grammar contains a production $\mathrm{X} \rightarrow \mathrm{y} \mathrm{Y}$ 汭:
first (δ) \subseteq follow (Y)
follow $(X) \subseteq$ follow (Y) whenever δ is nullable

Computation of Follow

Let X and Y be nonterminals, and $\gamma, \gamma 1$ strings of terminals and nonterminals.

- whenever the grammar contains a production $\mathrm{X} \longrightarrow \mathrm{YY}$: follow $(X) \subseteq$ follow (Y)
- whenever the grammar contains a production $\mathrm{X} \rightarrow \mathrm{y} \mathrm{Y}$ 汭:
first (δ) \subseteq follow (Y) follow $(X) \subseteq$ follow (Y) whenever δ is nullable

Iteratively visit grammar productions to compute nullable, first, follow for each nonterminal in grammar.

Computation of Follow

Let X and Y be nonterminals, and $\gamma, \gamma 1$ strings of terminals and nonterminals.

- whenever the grammar contains a production $X \longrightarrow \mathrm{YY}$: follow $(X) \subseteq$ follow (Y)
- whenever the grammar contains a production $\mathrm{X} \rightarrow \mathrm{y} \mathrm{Y}$ 汭:
first (δ) \subseteq follow (Y) follow $(X) \subseteq$ follow (Y) whenever δ is nullable

Iteratively visit grammar productions to compute nullable, first, follow for each nonterminal in grammar. want smallest sets!

- start the iteration with empty first and follow sets and nullable=No for all nonterminals and only add elements if forced to do so.

Computation of Follow

Let X and Y be nonterminals, and $\mathrm{\gamma}, \mathrm{\gamma} 1$ strings of terminals and nonterminals.

- whenever the grammar contains a production $\mathrm{X} \longrightarrow \mathrm{YY}$:

$$
\text { follow }(X) \subseteq \text { follow }(Y)
$$

- whenever the grammar contains a production $\mathrm{X} \rightarrow \mathrm{y} \mathrm{Y}$ 汭:
first (δ) \subseteq follow (Y)
follow $(X) \subseteq$ follow (Y) whenever δ is nullable

Iteratively visit grammar productions to compute nullable, first, follow for each nonterminal in grammar.
want smallest sets!

- start the iteration with empty first and follow sets and nullable=No for all nonterminals and only add elements if forced to do so.
- may need to visit some rules repeatedly. Order in which rules are visited affects the number of iterations needed, but not the final result.

Nullable, First, Follow: example

	$\begin{array}{ll} Y \xrightarrow{3} & \varepsilon \\ Y \xrightarrow{4} c & X \xrightarrow{X^{5}} \mathrm{Y} \\ \mathrm{X} \end{array}$		
	nulable	first	follow
X	No		
Y	No		
Z	No		

Visit rules
1,3, 4, 6

Nullable, First, Follow: example

	nullable	first	follow
X	No		
Y	No		
Z	No		

Visit rules $1,3,4,6$		nullable	first	follow
	No	$\mathrm{C}(6)$		
	Z	Yes (3)	$\mathrm{C}(4)$	
	No	$\mathrm{d}(1)$		

Visit rule 5

Nullable, First, Follow: example

	nullable	first	follow
X	No		
Y	No		
Z	No		

Visit rules 1, 3, 4, 6		nulable	first	follow
	X	No	a(6)	
Visit rule 5		Yes (3)	c(4)	
	Z	No	d 1)	
		ntillable	first	follow
	X	Yes(5)	$a, \mathrm{c}(5)$	
	Y	Yes	c	
	Z	No	d	

Nullable, First, Follow: example

	$$		
	nullable	first	follow
X	Yes	a, c	
Y	Yes	c	
Z	No	d	

Visit rule 2

Nullable, First, Follow: example

		nullable	first	follow
	X	Yes	a, c	
	Y	Yes	c	
	Z	No	d	
Visit rule 2		nullable	first	follow
	X	Yes	a, c	?
	Y	Yes	c	?
	Z	No	d, a(2), c(2)	?

Nullable, First, Follow: example

Nullable, First, Follow: example

\cdots		nullable	first	follow
	X	Yes	a, c	
	Y	Yes	c	
	Z	No	d	
Visit rule 2		nullable	first	follow
	X	Yes	a, c	c
	Y	Yes		$a, \mathrm{c}, \mathrm{d}$ (2)
	Z	No	d, a, c	?

Nullable, First, Follow: example

		nullable	first	follow
X	Yes	a, c		
	Y	Yes	c	
Z	No	d		

		nullable	first	follow
Visit rule 2		X	Yes	a, c
	Yes	c	c	
	No	d, a, c	? $, c, d$	

	nullable	first	follow
X	Yes	a, c	
Y	$a(2), d(2)$		
Z	Yes	c	a, c, d
	No	d, a, c	$?$

Nullable, First, Follow: example

	nullable	first	follow
X	Yes	a, c	c, a, d
Y	Yes	c	$a, \mathrm{c}, \mathrm{d}$
Z	No	d, a, c	

Nullable, First, Follow: example

		nulable	first	follow
	X	Yes	a, c	c, a, d
Visit rules 1-6	Y	Yes	c	a, c, d
	Z	No	d, a, c	
		nullable	first	follow
	X	Yes	a, c	c, a, d
	Y	Yes	c	a, c, d
	Z	No	d, a, c	

(no change)

Parse table extraction

- contains "action" for each nonterminal * terminal pair (N, t)
- predictive parsing: "action" is "rule to be applied" when seeing token type t during execution of function for nonterminal N
- lookup attempt in blank cells indicates syntax error (phrase rejected)

Parse table extraction

Filling the table:

1. Add rule $N \longrightarrow \gamma$ in row N, column t whenever t occurs in First(γ). Motivation: seeing t when expecting N selects rule $\mathrm{N} \longrightarrow \gamma$.

Parse table extraction

	null.	first	follow
X	Yes	ac	acd
X	Yes	c	acd
Z	No	acd	

Add rule $\mathrm{N} \longrightarrow \gamma$ in row N, column \mathbf{t} whenever \mathbf{t} occurs in First(Y).

Parse table extraction

	null.	first	follow
X	Yes	ac	acd
Y	Yes	C	acd
Z	No	acd	

Add rule $\mathrm{N} \longrightarrow \gamma$ in row N, column t whenever t occurs in First($\mathrm{\gamma})$.

Parse table extraction

	null.	first	follow
X	Yes	ac	acd
Y	Yes	c	acd
Z	No	acd	

Add rule $\mathrm{N} \longrightarrow \gamma$ in row N, column t whenever t occurs in First($\mathrm{\gamma})$.

2. If γ is nullable, add rule $N \longrightarrow \gamma$ in row N, column t whenever t in Follow(N). Motivation: seeing t when expecting N selects rule $N \longrightarrow \gamma$.

Parse table extraction

	null.	first	follow
X	Yes	ac	acd
X	Yes	c	acd
Z	No	acd	

Add rule $\mathrm{N} \longrightarrow \gamma$ in row N, column t whenever t occurs in First(y). If γ is nullable, add rule $N \longrightarrow \gamma$ in row N, column t whenever t in Follow (N).

	a	c	d
x	$\begin{aligned} & X \longrightarrow a \\ & X \longrightarrow Y \end{aligned}$	$X \longrightarrow Y$	$X \longrightarrow Y$
Y	$Y \longrightarrow \varepsilon$	$\begin{aligned} & Y \longrightarrow c \\ & Y \longrightarrow \varepsilon \end{aligned}$	$Y \longrightarrow \varepsilon$
z	$Z \rightarrow X Y Z$	$Z \longrightarrow X Y Z$	$\underset{Z}{Z} \xrightarrow{Z} X_{Y Z}$

Parse table extraction

	null.	first	follow
X	Yes	ac	acd
Y	Yes	c	acd
Z	No	acd	

Add rule $\mathrm{N} \longrightarrow \gamma$ in row N, column t whenever t occurs in First(y). If γ is nullable, add rule $N \longrightarrow \gamma$ in row N, column t whenever t in Follow (N).

Observation: some cells contain more than one rule which one should be used???

Predictive Parsing Table

If the predictive parsing table contains no duplicate entries, can build predictive parser for grammar.

- Grammar is LL(1) (left-to-right parse, left-most derivation, 1 symbol lookahead).
- Grammar is $\operatorname{LL}(\mathrm{k})$ if its $\operatorname{LL}(\mathrm{k})$ predictive parsing table has no duplicate entries.
- Rows correspond to non-terminals, columns correspond to every possible sequence of k terminals.
- The first $(\gamma)=$ set of all k -length terminal sequences that can begin any string derived from γ.
- LL(k) paring tables can be too large.
- Ambiguous grammars are not $\mathrm{LL}(\mathrm{k}), \forall \mathrm{k}$.

Another Example

$S^{\prime} \rightarrow S \$$	$S \rightarrow$ IF E THEN A ELSE A	$T \rightarrow \mathrm{NUM}$
$S \rightarrow E$	$E \rightarrow E+T$	$A \rightarrow \mathrm{ID}=\mathrm{NUM}$
$S \rightarrow$ IF E THEN A	$E \rightarrow T$	

Iteration 1:

	nullable	first	follow
S^{\prime}	no		
S	no	IF	\$
E	no		\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

Iteration 2:

	nullable	first	follow
S^{\prime}	no	IF	
S	no	IF	\$
E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

Another Example

$S^{\prime} \rightarrow S \$$	$S \rightarrow$ IF E THEN A ELSE A	$T \rightarrow$ NUM
$S \rightarrow E$	$E \rightarrow E+T$	$A \rightarrow \mathrm{ID}=\mathrm{NUM}$
$S \rightarrow$ IF E THEN A	$E \rightarrow T$	

Iteration 3:

	nullable	first	follow
S^{\prime}	no	IF	
S	no	IF, NUM	\$
E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

Iteration 4:

	nullable	first	follow
S^{\prime}	no	IF, NUM	
S	no	IF, NUM	\$
E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

No futher changes

Predictive Parsing Table

	nullable	first	follow
S^{\prime}	no	IF, NUM	
S	no	IF, NUM	\$
E	no	NUM	\$, THEN, +
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

Build predictive parsing table from nullable, first, and follow sets.

	IF	THEN	ELSE	+	NUM	ID	$=$	\$
$S^{\prime \prime}$	$S^{\prime} \rightarrow S$				$S^{\prime} \rightarrow S$			
S	$\begin{array}{\|\|l\|l} \hline S \rightarrow \mathrm{IF} E \text { THEN } A \\ S \rightarrow \mathrm{IF} E \text { THEN } A \text { ELSE } A \end{array}$				$S \rightarrow E$			
E					$\begin{array}{\|l\|} \hline \begin{array}{l} E \rightarrow E+T \\ E \rightarrow T \end{array} \\ \hline \end{array}$			
T					$T \rightarrow$ NUM	$A \rightarrow \mathrm{ID}=\mathrm{NUM}$		

Table has duplicate entries \Rightarrow grammar is not LL(1)!

1. $\begin{aligned} & E \rightarrow E+T \\ & E \rightarrow T\end{aligned}$

- first(E+T) $=$ first(T)
- When in function E() , if next token is NUM, parser will get stuck.
- Grammar is left-recursive - left-recursive grammars cannot be LL(1).
- Solution: rewrite grammar so that it is right-recursive.

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow \epsilon \\
& E^{\prime} \rightarrow+T E^{\prime}
\end{aligned}
$$

- In general, $\begin{aligned} & X \rightarrow X \gamma \\ & X \rightarrow \alpha\end{aligned}$ derives strings of form $\alpha \gamma^{*}(\alpha$ doesn't start with $X)$.

These two productions can be rewritten as follows:

$$
\begin{aligned}
& X \rightarrow \alpha X^{\prime} \\
& X^{\prime} \rightarrow \epsilon \\
& X^{\prime} \rightarrow \gamma X^{\prime}
\end{aligned}
$$

2. $\begin{aligned} & S \rightarrow \text { IF } E \text { THEN } A \\ & S \rightarrow \text { IF } E \text { THEN } A \text { ELSE } A\end{aligned}$

- Two productions begin with same symbol.
- first(IF E THEN A) $=$ first(IF E THEN A ELSE A)
- Solution: use left-factoring
$S \rightarrow$ IF E THEN $A V$
$V \rightarrow \epsilon$
$V \rightarrow \operatorname{ELSE} A$

Example (try at home)

Show that modified grammar is LL(1).

$$
\begin{array}{ll}
S^{\prime} \rightarrow S \$ & V \rightarrow \operatorname{ELSE} A \\
S \rightarrow E & E \rightarrow T E^{\prime} \\
S \rightarrow \text { IF } E \text { THEN } A V & E^{\prime} \rightarrow \epsilon \\
V \rightarrow \epsilon & E^{\prime} \rightarrow+T E
\end{array}
$$

$T \rightarrow \mathrm{NUM}$

$A \rightarrow \mathrm{ID}=\mathrm{NUM}$

Example

Show that modified grammar is $\operatorname{LL}(1)$. Build predictive parsing table.

	nullable	first	follow
S^{\prime}	no	IF,NUM	
S	no	IF,NUM	$\$$
V	yes	ELSE	\$
E	no	NUM	\$, THEN
E^{\prime}	yes	+	\$, THEN
T	no	NUM	\$, THEN, +
A	no	ID	\$, ELSE

	IF	THEN	ELSE	+	NUM	ID	=	\$
$S^{\prime \prime}$	$S^{\prime} \rightarrow S$				$S^{\prime} \rightarrow S$			
S	$S \rightarrow$ IF E THEN $A V$				$S \rightarrow E$			
V			$V \rightarrow$ ELSE A		$E \rightarrow T E^{\prime}$			$V \rightarrow \epsilon$
E					$E \rightarrow T E^{\prime}$			
E T		$E^{\prime} \rightarrow \epsilon$		$E^{\prime} \rightarrow+T E^{\prime}$				$E^{\prime} \rightarrow \epsilon$
T A					$T \rightarrow$ NUM	$A \rightarrow \mathrm{ID}=\mathrm{NUM}$		

Table does not have duplicate entries \Rightarrow modified grammar is $\operatorname{LL}(1)$!

Limitation of Recursive Descent Parsing

Reminder: predictive parsing selects rule based on the next input token(s)

- LL(1): single next token
- LL(k): next k tokens

Sometimes, there's no k that does the job.

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

- use a stack to remember ("shift") symbols
- based on stack content and next symbol, select one of two actions:

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

- use a stack to remember ("shift") symbols
- based on stack content and next symbol, select one of two actions:
- shift: push input token onto stack

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

- use a stack to remember ("shift") symbols
- based on stack content and next symbol, select one of two actions:
- shift: push input token onto stack
- reduce: chose a production $(X \longrightarrow A B C)$; pop its RHS (C B A); push its LHS (X). So can only reduce if we see a full RHS on top of stack.

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

- use a stack to remember ("shift") symbols
- based on stack content and next symbol, select one of two actions:
- shift: push input token onto stack
- reduce: chose a production $(X \longrightarrow A B C)$; pop its RHS (C B A); push its LHS (X). So can only reduce if we see a full RHS on top of stack.
- initial state: empty stack, parsing pointer at beginning of token stream

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

- use a stack to remember ("shift") symbols
- based on stack content and next symbol, select one of two actions:
- shift: push input token onto stack
- reduce: chose a production $(X \longrightarrow A B C)$; pop its RHS (C B A); push its LHS (X). So can only reduce if we see a full RHS on top of stack.
- initial state: empty stack, parsing pointer at beginning of token stream
- shifting of end marker \$: input stream has been parsed successfully.
- exhaustion of input stream with nonempty stack: parse fails

Shift-Reduce Parsing

Idea: delay decision until all tokens of an RHS have been seen

- use a stack to remember ("shift") symbols
- based on stack content and next symbol, select one of two actions:
- shift: push input token onto stack
- reduce: chose a production $(X \longrightarrow A B C)$; pop its RHS (C B A); push its LHS (X). So can only reduce if we see a full RHS on top of stack.
- initial state: empty stack, parsing pointer at beginning of token stream
- shifting of end marker \$: input stream has been parsed successfully.
- exhaustion of input stream with nonempty stack: parse fails
- a.k.a. bottom-up parsing
- a.k.a LR(k): left-to-right parse, rightmost derivation, k-token lookahead
- shift-reduce parsing can parse more grammars than predictive parsing

Shift-Reduce Parsing

How does parser know when to shift or reduce?

- DFA: applied to stack contents, not input stream
- Each state corresponds to contents of stack at some point in time.
- Edges labelled with terms/non-terms that can appear on stack.

Example

Grammar:

$1 \mathrm{~A} \rightarrow \mathrm{~S}$ EOF
$2 \mathrm{~S} \rightarrow$ (L)
$3 \mathrm{~S} \rightarrow$ id $=$ num
$4 \mathrm{~L} \rightarrow \mathrm{~L} ; \mathrm{S}$
$5 \mathrm{~L} \rightarrow \mathrm{~S}$

Input:

$(a=4 ; b=5) \rightarrow\left(I D_{a}=N U M_{4} ; I D_{b}=N U M_{5}\right)$

input: (ID = NUM ; ID = NUM)
1
stack: (
4. $L \longrightarrow \mathrm{~L}$; S
5. $L \longrightarrow S$
action: shift
input: (ID = NUM ; ID = NUM)
2

3
stack: (ID =

1
input: (ID = NUM ; ID = NUM)
stack: (
action: shift
input: (ID = NUM ; ID = NUM)
2
stack: (ID
action: shift
input: (ID = NUM ; ID = NUM)
3

4
stack: (ID = NUM
stack: (
action: shift
input: (ID $=$ NUM ; ID $=$ NUM)
2
stack: (ID
action: shift
input: (ID = NUM ; ID = NUM)
3
stack: (ID =
action: shift
input: (ID $=$ NUM ; ID $=$ NUM)
4
stack: (ID = NUM
action: reduce 3

Example

1. $\mathrm{A} \longrightarrow \mathrm{SEOF}$
2. $\mathrm{S} \rightarrow(\mathrm{L})$
3. $\mathrm{S} \rightarrow \mathrm{id}=$ num
4. $\mathrm{L} \rightarrow \mathrm{S}$
action: reducも 5
input: (ID = NUM ; ID = NUM)
stack: (L

input: (ID = NUM ; ID = NUM)
5 stack: (S
action: reduce 5
input: (ID = NUM ; ID = NUM)
6
stack: (L
action: shift
input: (ID = NUM ; ID = NUM)
7
stack: (I :
action: shift
input: (ID $=$ NUM ; ID $=$ NUM)
8
stack: (L; ID
input: (ID = NUM ; ID = NUM)
5 stack: (S
action: reduce 5
input: (ID = NUM ; ID = NUM)
6
stack: (L
action: shift
input: (ID = NUM ; ID = NUM)
7
stack: (L ;
action: shift
input: (ID = NUM ; ID = NUM)
8
stack:
action: $\mathrm{IL}:$ shift

Example

1. $\mathrm{A} \rightarrow \mathrm{SEOF}$
2. $\mathrm{S} \rightarrow(\mathrm{L})$
3. $\mathrm{S} \rightarrow \mathrm{id}=$ num
4. $\mathrm{L} \rightarrow \mathrm{S}$
5. $\mathrm{L} \rightarrow \mathrm{S}$ action: shift input: (ID = NUM ; ID = NUM)

10
stack: (L ; ID = NUM
action: reduce 3
input: (ID = NUM ; ID = NUM)
11
stack: (L ; S

Example

1. $\mathrm{A} \rightarrow \mathrm{SEOF}$
2. $\mathrm{S} \rightarrow(\mathrm{L})$
3. $\mathrm{S} \rightarrow \mathrm{id}=$ num
4. $\mathrm{L} \rightarrow \mathrm{L} ; \mathrm{S}$
5. $\mathrm{L} \rightarrow \mathrm{S}$ action: shift

$$
\text { input: }(I D=N U M ; I D=N U M)
$$

10
stack: (L ; ID = NUM
action: reduce 3

$$
\text { input: }(I D=N U M ; I D=N U M)
$$

11
input: (ID $=$ NUM ; ID $=$ NUM
9
stack: (L ; ID =
5. L

10

```
    stack: ( L ; S
    input: ( ID = NUM ; ID = NUM )
```

12
stack: (L

Example

1. $A \longrightarrow S E O F$
 2. $S \rightarrow(L)$
 3. $S \rightarrow$ id = num 4. $\mathrm{L} \longrightarrow \mathrm{L} ; \mathrm{S}$
 5. $L \longrightarrow S$

9
input: (ID = NUM ; ID = NUM)
stack: (L ; ID =
action: shift
input: (ID $=$ NUM ; ID $=$ NUM)

10

> stack: (L ; ID = NUM
action: reduce 3
input: (ID $=\mathrm{NUM}$; $I D=\mathrm{NUM})$
11
stack: (L ; S
action: reduce 4
input: (ID = NUM ; ID = NUM)
12
stack: (I action: shift
input: (ID = NUM ; ID = NUM)
13 stack: (L)
4. $\mathrm{L} \longrightarrow \mathrm{L}$; S
5. $\mathrm{L} \longrightarrow \mathrm{S}$
input: (ID = NUM ; ID = NUM)
13
stack: (L)
action: reduce 2
input: (ID = NUM ; ID = NUM)
14
stack: S

```
input: ( ID = NUM ; ID = NUM )
```

13
stack: (L)
action: reduce 2
input: (ID = NUM ; ID = NUM)
14
stack: S
action: ACCEPT i.e. shift (implicit) EOF

13	```stack: (L) action: reduce 2```
	input: (ID = NUM ; ID = NUM)
14	$\begin{aligned} & \text { stack: S } \\ & \text { action: } A C E \text { i.e. shift (implicit) EOF } \end{aligned}$

Next lecture: how to build the shift-reduce DFA, ie parser table

13

```
        stack: ( L )
    action: reduce 2
    input: ( ID = NUM ; ID = NUM )
```

14

```
    stack: S
    action: ACCEPT i.e. shift (implicit) EOF
```

Next lecture: how to build the shift-reduce DFA, ie parser table
Again, duplicate entries in cells denote parse conflicts: shift-reduce, reduce-reduce

The Dangling Else Problem

- Valid Program: if a then if b then S1 else S2
$1 \mathrm{~S} \rightarrow$ if E then S else S
$2 \mathrm{~S} \rightarrow$ if E then S
$3 \mathrm{~S} \rightarrow$ OTHER

The Dangling Else Problem

- Valid Program: if a then if b then S1 else S2
$1 \mathrm{~S} \rightarrow$ if E then S else S
$2 \mathrm{~S} \rightarrow$ if E then S
$3 \mathrm{~S} \rightarrow$ OTHER
Potential problem?

The Dangling Else Problem

- Valid Program: if a then if b then S1 else S2
$1 \mathrm{~S} \rightarrow$ if E then S else S
$2 \mathrm{~S} \rightarrow i f \mathrm{E}$ then S
$3 \mathrm{~S} \rightarrow$ OTHER
- 2 interpretations: if a then [if b then S1 else S2]
if a then [if b then S1] else S2

The Dangling Else Problem

- Valid Program: if a then if b then S1 else S2
$1 \mathrm{~S} \rightarrow$ if E then S else S
$2 \mathrm{~S} \rightarrow$ if E then S
$3 \mathrm{~S} \rightarrow$ OTHER
- 2 interpretations: if a then [if b then S1 else S2]
if a then [if b then S1] else S2
- Want first behavoir, but parse will report shift-reduce conflict when S 1 is on top stack.

The Dangling Else Problem

- Valid Program: if a then if b then S1 else S2
$1 \mathrm{~S} \rightarrow i f \mathrm{E}$ then S else S
$2 \mathrm{~S} \rightarrow$ if E then S
$3 \mathrm{~S} \rightarrow$ OTHER
- 2 interpretations: if a then [if b then S1 else S2]
if a then [if b then S1] else S2
- Want first behavoir, but parse will report shift-reduce conflict when S 1 is on top stack.
- Eliminate Ambiguity by modifying grammar (matched/unmatched):
$1 \mathrm{~S} \rightarrow \mathrm{M}$
$2 \mathrm{~S} \rightarrow \mathrm{U}$
$3 \mathrm{M} \rightarrow i f \mathrm{E}$ then M else M
$4 \mathrm{M} \rightarrow$ OTHER
$5 \mathrm{U} \rightarrow$ if E then S
$6 \mathrm{U} \rightarrow$ if E then M else U

Summary

- Construction of recursive-descent parse tables

First
 Nullable Follow

- Shift-reduce parsing overcomes requirement to make decision which rule to apply before entire RHS is seen

- "dangling-else" as typical shift-reduce conflict

ML-YACC (Yet Another Compiler-Compiler)

- Input to ml-yacc is a context-free grammar specification.
- Output from ml-yacc is a shift-reduce parser in ML.

CFG Specification

Specification of a parser has three parts:

User Declarations
 \%\%
 ML-YACC-Definitions
 \%\%
 Rules

User declarations: definitions of values to be used in rules

ML-YACC Definitions:

- definitions of terminals and non-terminals
- precedence rules that help resolve shift-reduce conflicts

Rules:

- production rules of grammar
- semantic actions associated with reductions

ML-YACC Declarations

- Need to specify type associated with positions of tokens in input file
\%pos int
- Need to specify terminal and non-terminal symbols (no symbols can be in both lists)

```
%term IF | THEN | ELSE |...
%nonterm prog | stmt | expr |...
```

- Optionally specify end-of-parse symbol - terminals which may follow start symbol
\%eop EOF
- Optionally specify start symbol - otherwise, LHS non-terminal of first rule is taken as start symbol

```
%start prog
```


Attribute Grammar

- nonterminal and terminal symbols are associated with "attribute values"
- for rule $A \longrightarrow \gamma$, synthesize attribute for A from attribute for the symbols in Y
- can be used to do simple calculation inside parser:

- requires type-correctness of synthesized attributes w.r.t. ML operators like +, based on association of types to symbols
- ML-YACC's result of successful parse: attribute synthesized for start symbol (unit value if no attribute given)
- other use: abstract syntax tree (topic of future lecture)

```
symbol}\mp@subsup{0}{0}{: symbol }\mp@subsup{\mathrm{ symbol}}{2}{}\ldots..\mp@subsup{\mathrm{ symbol}}{n}{}(\mathrm{ semantic_action)
```

- Semantic action typically builds piece of AST corresponding to derived string
- Can access attribute/value of RHS symbol X using $\mathrm{X}<\mathrm{n}>$, where n specifies a particular occurrence of X on RHS.

```
%term PLUS | MINUS | NUM of int | ...
%nonterm exp of int | ...
exp: exp PLUS exp (exp1 + exp2)
    exp MINUS exp (exp1 - exp2)
    NUM
(NUM)
```

- Type of value computed by semantic action must match type of value associated with LHS non-terminal.

ML-YACC and Ambiguous Grammars

Remember: grammar is ambiguous if there are strings with > 1 parse trees
Example: expr \longrightarrow expr - expr expr \longrightarrow expr * expr ...

VS.

Shift-reduce conflicts:
when parsing $4-5$ * 6 : eventually,

- top element of stack is $\mathrm{E}-\mathrm{E}$
- TIMES is current symbol
- can reduce using rule $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{E}$, or can shift TIMES.
- shift preferred!

ML-YACC and Ambiguous Grammars

Remember: grammar is ambiguous if there are strings with > 1 parse trees
Example: expr \longrightarrow expr - expr

vS.

Shift-reduce conflicts:
when parsing $4-5$ * 6 : eventually,

- top element of stack is $\mathrm{E}-\mathrm{E}$
- TIMES is current symbol
- can reduce using rule $\mathrm{E} \rightarrow \mathrm{E}-\mathrm{E}$, or can shift TIMES.
- shift preferred!
when parsing 4-5-6: eventually,
- top element of stack is $E-E$
- MINUS is current symbol
- can reduce using rule $E \rightarrow E-E$, or can shift MINUS.
- reduce preferred!

Also: reduce-reduce conflicts if multiple rules can be reduced
ML-YACC warns about conflicts, and applies default choice (see below)

Directives

Three Solutions:

1. Let YACC complain, but demonstrate that its choice (to shift) was correct.
2. Rewrite grammar to eliminate ambiguity.
3. Keep grammar, but add precedence directives which enable conflicts to be resolved. Use \%left, \%right, \%nonassoc

- For this grammar:
\%left PLUS MINUS
\%left MULT DIV
- PLUS, MINUS are left associative, bind equally tightly
- MULT, DIV are left associative, bind equally tightly
- MULT, DIV bind tighter than PLUS, MINUS

Directives

- Given directives, ML-YACC assigns precedence to each terminal and rule
- Precedence of terminal based on order in which associativity specified
- Precedence of rule is the precedence of right-most terminal. For example, precedence $(\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E})=$ precedence $($ PLUS $)$.
- Given shift-reduce conflict, ML-YACC performs the following:

1. Find precedence of rule to be reduced, terminal to be shifted.
2. prec(terminal) $>\operatorname{prec}($ rule $) \Rightarrow$ shift.
3. $\operatorname{prec}($ rule $)>\operatorname{prec}($ terminal $) \Rightarrow$ reduce.
4. $\operatorname{prec}($ terminal $)=\operatorname{prec}($ rule $)$, then:
$-\operatorname{assoc}($ terminal $)=$ left \Rightarrow reduce .
$-\operatorname{assoc}($ terminal $)=$ right \Rightarrow shift.
$-\operatorname{assoc}($ terminal $)=$ nonassoc \Rightarrow report as error.

Precedence Examples

1	```stack: 4 + 5 action: prec(*) > prec(+) -> shift```
2	```input: 4 * 5 + 6 stack: 4 * 5 action: prec(*) > prec(+) -> reduce```
3	```input: 4 + 5 + 6 stack: 4 + 5 action: assoc(+) = left -> reduce```

Default Behavior

What if directives not specified?

- shift-reduce: report error, shift by default.
- reduce-reduce: report error, reduce by rule that occurs first.

What to do:

- shift-reduce: acceptable in well defined cases (dangling else).
- reduce-reduce: unnacceptable. Rewrite grammar.

Direct Rule Precedence Specification

Can assign specific precedence to rule, rather than precedence of last terminal.

- Use the \%prec directive.
- Commonly used for the unary minus problem.

```
%left PLUS MINUS
%left MULT DIV
```

- Consider $-4 * 6$, minUS NUM (4) MULT NUM (6)
- We perfer to bind left unary minus ("-") tighter. Here, precedence of MINUS is lower than MULT, so we get $-(4 * 6)$, not $(-4) * 6$.
- Solution:

```
    %left PLUS MINUS
    %left MULT DIV
    %left UMINUS
    exp : MINUS expr %prec UMINUS ()
    expr PLUS expr ()...
```


Syntax vs. Semantics

Consider language with two classes of expressions

- Arithmetic expressions (ae)

```
ae : ae PLUS ae ()
    ID ()
```

- Boolean expressions (be)

```
be : be AND be ()
    be OR be ()
    be EQ be ()
    ID ()
```

- Consider: $\mathrm{a}:=\mathrm{b}, \operatorname{ID}(\mathrm{a})$ ASSIGN ID(b):
- Reduce-reduce conflict - parser can't choose between be \rightarrow ID or ae \rightarrow ID.
- For now ae and be should be aliased - let semantic analysis (next phase) determine that $\mathrm{a} \& \mathrm{~b}+\mathrm{c}$ is a type error.
- Type checking cannot be done easily in context free grammars.

Constructing LR parsing tables

- LR(0)
- SLR
- LR(1)
- LALR(1)

Shift-Reduce, Bottom Up, LR(1) Parsing

- Shift-reduce parsing can parse more grammars than predictive parsing.
- Shift-reduce parsing has stack and input.
- Based on stack contents and next input token, one of two action performed:

1. Shift - push next input token onto top of stack.
2. Reduce - choose production ($\mathrm{X} \rightarrow \mathrm{ABC}$); pop off RHS (C, B, A); push LHS (X).

- If $\$$ is shifted, then input stream has been parsed successfully.

Can generalize to case where parser makes decision based on stack contents and next k tokens. LR(k):

- Left-to-right parse
- right-most derivation
- k-symbol lookahead
$\mathrm{LR}(k)$ parsing, $k>1$, rarely used in compilation:
- DFA too large: need transition for every sequence of k terminals.
- Most programming languages can be described by LR(1) grammars.

Shift Reduce Parsing DFA

Parser uses DFA to make shift/reduce decisions:

- Each state corresponds to contents of stack at some point in time.
- Edges labeled with terminals/non-terminals.

Rather than scanning entire stack to determine current DFA state, parser can remember state reached for each stack element.

- Transition table for $\mathrm{LR}(1)$ or $\mathrm{LR}(0) \mathrm{DFA}$:

	Terminals $\left(T_{1}, T_{2}, \ldots, T_{n}\right)$	Non-Terminals $\left(N_{1}, N_{2}, \ldots, N_{n}\right)$
1	actions	actions
2	$\mathrm{sn} \rightarrow$ shift n	gz \rightarrow goto z
3	$\mathrm{rk} \rightarrow$ reduce k	
\vdots	$\mathrm{a} \rightarrow$ accept	
n	\rightarrow error	

Parsing Algorithm

Look up DFA state on top of stack, next terminal in input:

- $\operatorname{shift}(n)$:
- Advance input by one.
- Push input token on stack with n (the new state).
- reduce (k) :
- Pop stack as many times as number of symbols on RHS of rule k.
- Let X be LHS of rule k
- In state now on top of stack, look up X to get goto(z)
- Push X on stack with z (the new state).
- accept \rightarrow stop, report success.
- error \rightarrow stop, report syntax error.

To understand $\mathrm{LR}(k)$ parsing, first focus on $\mathrm{LR}(0)$ parser construction using an example.

LR(0) Parsing

Grammar 3.20 (book):

$$
\begin{array}{lll}
1 S^{\prime} \rightarrow S \$ & 3 S \rightarrow \mathrm{x} & 5 L \rightarrow L, S \\
2 S \rightarrow(L) & 4 L \rightarrow S &
\end{array}
$$

Initially, stack empty, input contains ' S ' string followed by a ' $\$$ ':

- Combination of production and ' \because ' called $\operatorname{LR}(0)$ item.

```
1 \begin{tabular}{l}
\(\begin{array}{l}S^{\prime} \rightarrow . S \$ \\
S \rightarrow .(L) \\
S \rightarrow . \mathrm{x}\end{array}\) \\
\hline
\end{tabular}
```

- '.' specifies parser position.
- Three items represent closure of: $S^{\prime} \rightarrow . S \$$
- Closure adds more items to a set when dot exists to left of a non-terminal.

\squarerepresents the initial parser state. Develop other states step by step, by considering all possible transitions: 1. move cursor past x
2. move cursor past (
3. move cursor past S

Moving the dot past a terminal \mathbf{t} represents "shift \mathbf{t} ".

"shift (". Don’t forget the closure!

LR(0) States $\begin{array}{ll}S^{\prime} \rightarrow S S & S \rightarrow X \\ S \rightarrow(L) & L \rightarrow S\end{array}$

"shift (". Don’t forget the closure! Yes, CLOSURE!

Moving the dot past a nonterminal \mathbf{N} represents "goto" after a reduction for a rule with LHS \mathbf{N} has been performed.

$$
\begin{array}{lll}
S^{\prime} \rightarrow S \$ & S \rightarrow X & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S & \\
\hline
\end{array}
$$

In 3, we have four transitions to consider. Let's start with the terminals...

Next, nonterminals S and L .

LR(0) States

$$
\begin{array}{lll}
S^{\prime} \rightarrow S \$ & S \rightarrow X & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S
\end{array}
$$

LR(0) States

$$
\begin{array}{lll}
S^{\prime} \rightarrow S \$ & S \rightarrow X & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S
\end{array}
$$

LR(0) States

$$
\begin{array}{lll}
S^{\prime} \rightarrow S \$ & S \rightarrow X & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S
\end{array}
$$

Closure! In 8 , we have three transitions to consider. Terminals x and (...

LR(0) States

$$
\begin{array}{lll}
S^{\prime} \rightarrow S \$ & S \rightarrow X & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S
\end{array}
$$

and nonterminal S...

LR(0) States

$$
\begin{array}{lll}
S^{\prime} \rightarrow S \$ & S \rightarrow X & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S & \\
\hline
\end{array}
$$

LR(0) States

$$
\begin{array}{lll}
S^{\prime} \rightarrow S ~ \$ & S \rightarrow x & L \rightarrow L, S \\
S \rightarrow(L) & L \rightarrow S & \\
\hline
\end{array}
$$

Done. How can we extract the parsing table?

LR(0) parsing table

LR(0) parsing table

For each transition $X \xrightarrow{t} Y$ where \mathbf{t} is a terminal, add "shift-to Y " in cell (X, \mathbf{t}).

LR(0) parsing table

For each transition $X \xrightarrow{\mathbf{t}} \mathbf{Y}$ where \mathbf{t} is a terminal, add "shift-to Y " in cell (X, \mathbf{t}).							$\xrightarrow{S} \xrightarrow{\text { n }} \text { 组 }$$\xrightarrow{\mathrm{O}} \xrightarrow[\mathrm{~S} \rightarrow(\mathrm{~L}) .]{\text {. }}$	
	()	X	/	\$	S		L
1	s3		s2					
2								
3	s3		s2					
4								
5		s6		s8				
6								
7								
8		s3	s2					
9								

LR(0) parsing table

For each transition $X \xrightarrow{N} Y$ where \mathbf{N} is a nonterminal, add "goto \mathbf{Y} " in cell (X, \mathbf{N}).

LR(0) parsing table

For each transition $X \xrightarrow{N} Y$ where \mathbf{N} is a nonterminal, add "goto \mathbf{Y} " in cell (X, \mathbf{N}).

	()	x	,	\$	S	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4							
5		s6		s8			
6							
7							
8		s3	s2			g9	
9							

LR(0) parsing table

LR(0) parsing table

							$\xrightarrow{S} \xrightarrow{L \rightarrow L, S .}$ $\xrightarrow{1} \text { S } \quad \sqrt{6}$
	()	X	I	\$	S	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4					accept		
5		s6		s8			
6							
7							
8		s3	s2			g9	
9							

$S^{\prime} \xrightarrow{0} S \$ \quad S \xrightarrow{2} \times \quad L \xrightarrow{4} L, S$
 For each state X containing an item $\mathbf{N} \xrightarrow{\mathrm{n}} \mathrm{\gamma}$. (dot at end of item for rule n) put "reduce n " in all cells (X, t).

	()	x		\$	s	L
1	s3		s2			g4	
2							
3	s3		s2			g7	g5
4					accept		
5		s6		s8			
6							
7							
8		s3	s2			g9	
9							

$S^{\prime} \xrightarrow{0} S \$ \quad S \xrightarrow{2} \times \quad L \xrightarrow{4} L, S$
 $\mathrm{S} \xrightarrow{\stackrel{1}{(}(\mathrm{L}) \xrightarrow{\mathrm{L}} \mathrm{S}}$

For each state X containing an item $\mathbf{N} \xrightarrow{\mathrm{n}} \mathrm{\gamma}$. (dot at end of item for rule n) put "reduce n " in $\quad s$ all cells (X, t).

	()	x		\$	S	L
1	$\mathbf{s 3}$		$\mathbf{s 2}$			$\mathbf{g 4}$	
2	r2	r2	r2	r2	r2		
3	$\mathbf{s 3}$		$\mathbf{s 2}$			$\mathbf{g 7}$	$\mathbf{g 5}$
4					accept		
5		$\mathbf{s 6}$		$\mathbf{s 8}$			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8		$\mathbf{s 3}$	$\mathbf{s 2}$			$\mathbf{g 9}$	
9	$\mathbf{r 4}$						

LR(0) parsing table

$$
\begin{array}{lll}
\hline \mathrm{S}^{\prime} \xrightarrow[\rightarrow]{\mathrm{S}} \$ & \mathrm{~S} \xrightarrow{2} \mathrm{X} \\
\mathrm{~S} \rightarrow(\mathrm{~L}) & \mathrm{L} \xrightarrow{\rightarrow} \mathrm{~S} & \\
\hline
\end{array}
$$

How to use the table: parse (x, x)

Stack	Input	Action
1	$(x, x) \$$	

No cell with >1 action $=>\operatorname{LR}(0)$

	()	x	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					accept		
5		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8		s3	s2			g9	
9	r4	r4	r4	r4	r4		

LR(0) parsing table

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \$ \\ & S \xrightarrow{1}(L) \end{aligned}$			$\begin{aligned} & S \xrightarrow{2} x \\ & L \xrightarrow{3} S \end{aligned}$					How to use the table: parse (x, x)					
					Stack	Input	Action						
No cell with >1 action $=>L R(0)$								1	(x, x) \$	Shift 3			
								1 (3	$x, x)$ \$	Shift 2			
								1 (3 x2	, x) \$	Reduce 2			
	()				x	,	\$	S	L	1 (3 S7	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8			
2	r2	r2	r2	r2	r2			1 (3 L5	, x) \$				
3	s3		s2			g7	g5	1 (3 L5 ,8	x) \$				
4													
5		s6		s8									
6	r1	r1	r1	r1	r1								
7	r3	r3	r3	r3	r3								
8		s3	s2			g9							
9	r4	r4	r4	r4	r4								

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \$ \\ & S \xrightarrow{1}(L) \end{aligned}$			$\begin{aligned} & \underset{\mathrm{S}}{\underset{\rightarrow}{2} \mathrm{~S}} \mathrm{~S} \\ & \mathrm{~L} \xrightarrow{4} \mathrm{~L}, \mathrm{~S} \\ & \hline \end{aligned}$					How to use the table: parse (x, x)							
			Stack	Input	Action										
No cell with >1 action $=>L R(0)$								1	(x, x) \$	Shift 3					
								1 (3	$x, x)$ \$	Shift 2					
								$1(3 \times 2$, x) \$	Reduce 2					
	()						x	,	\$	S	L	1 (3 S7	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8					
2	r2 s3	r2	r2	r2	r2	g7	g5	1 (3 L5 ,8	x) \$	Shift 2					
4					accept			1 (3 L5 , 8×2) \$						
5		s6		s8											
6	r1	r1	r1	r1	r1										
7	r3	r3	r3	r3	r3										
8		s3	s2)			g9									
9	r4	r4	14	r4	r4										

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \$ \\ & S \xrightarrow{\rightarrow}(L) \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{S} \stackrel{2}{\rightarrow} \\ & \mathrm{~L} \xrightarrow{3} \end{aligned}$		$L \xrightarrow{4} L, S$			How to use the table: parse (x, x)				
				Input								
No cell with >1 action $=>$ LR(0)								1	(x, x) \$	Shift 3		
								1 (3	$\mathrm{x}, \mathrm{x})$ \$	Shift 2		
								1 (3 x2	, x) \$	Reduce 2		
	($)$			x		\$	S	L	1 (3 S7	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8		
2	r2	(r2)	r2 s2	r2	r2	g7	g5	1 (3 L5 , 8	x) \$	Shift 2		
4					acc			1 (3 L5, 8×2) \$	Reduce 2		
5		s6		s8				1 ($3 \mathrm{~L} 5,8 \mathrm{~S}$?) \$			
6	r1	r1	r1	r1	r1							
7	r3	r3	r3	r3	r3							
8		s3	s2			g9						
9	r4	r4	r4	r4	r4							

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \\ & S \xrightarrow{1}(L \end{aligned}$			$\begin{aligned} & \mathrm{S} \xrightarrow{2} \mathrm{x} \\ & \mathrm{~L} \xrightarrow{3} \mathrm{~S} \end{aligned}$			$\mathrm{L} \stackrel{4}{\rightarrow} \mathrm{~L}, \mathrm{~S}$		How to use the table: parse (x, x)					
			Stack	Input	Action								
No cell with >1 action $=>$ LR(0)								1	(x, x) \$	Shift 3			
								1 (3	$x, x)$ \$	Shift 2			
								1 (3 x2	, x) \$	Reduce 2			
	($)$				x		\$	S	L	1 (3 57	, x) \$	Reduce 3
1	s3		s2			g4	g5	1 (3 L5	, x) \$	Shift 8			
2	r2 s3	r2	r2	12	r2			1 (3 L5 , 8	x) \$	Shift 2			
4					accept ${ }^{\mathbf{g 7}}$			1 ($3 \mathrm{~L} 5,8 \times 2$) \$	Reduce 2			
5		s6		s8				1 (3 L5 , 8 S9) \$				
6	r1	r1	r1	r1	r1	90							
7	r3	r3	r3	r3	r3								
8		s3	s2										
9	r4	r4	r4	r4	r4								

LR(0) parsing table

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \$ \\ & S \xrightarrow{1}(L) \end{aligned}$			$\begin{aligned} & \mathrm{S} \xrightarrow{2} \\ & \mathrm{~L} \xrightarrow{3} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{x} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	$\xrightarrow{4} L, S$		How to use the table: parse (x, x)					
				Input									
No cell with >1 action $=>$ LR(0)								1	Shift 3				
								1 (3	$x, x)$ \$	Shift 2			
								1 (3 x2	, x) \$	Reduce 2			
	()				x		\$	s	L)	1 (3 57	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8			
2	r2 s3	r2	r2	12	r2	g7	(95)	1 ($3 \mathrm{~L} 5,8$	x) \$	Shift 2			
4					acc			1 ($3 \mathrm{~L} 5,8 \times 2$) \$	Reduce 2			
5		s6		s8				1 (3 L5 , 8 S9) \$	Reduce 4			
6	r1	r1	r1	r1	r1								
7	r3	r3	r3	r3	r3			1 (5)				
8		s3	s2			g9							
9	r4	r4	r4	r4	r4								

LR(0) parsing table

$\begin{aligned} & \hline S^{\prime} \xrightarrow{0} S \$ \\ & S \xrightarrow{1}(L) \end{aligned}$			$\begin{aligned} & S \xrightarrow{2} x \\ & L \xrightarrow{3} S \end{aligned}$			$L \xrightarrow{4} L, S$		How to use the table: parse (x, x)		
No cell with >1 action $=>L R(0)$								1	(x, x) \$	Shift 3
								1 (3	$x, x)$ \$	Shift 2
								1 (3 x2	, x) \$	Reduce 2
	($)$	x	,	\$	S	L	1 (3 S7	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8
2	r2	r2	r2	r2	r2	g7	g5	1 (3 L5 , 8	x) \$	Shift 2
4								1 (3 L5 , 8 x2) \$	Reduce 2
5		56		s8				1 (3 L5 ,8 S9) \$	Reduce 4
6	r1	r1	r1	r1	r1					
7	r3	r3	r3	r3	r3			1 (3 L5) \$	Shift 6
8		s3	s2			g9		1 (3 L5) 6	\$	
9	r4	r4	r4	r4	r4					

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \$ \\ & S^{1}\left(L^{1}\right. \end{aligned}$			$\begin{aligned} & \mathrm{S} \xrightarrow{2} \\ & \mathrm{~L} \xrightarrow{3} \end{aligned}$		$\underset{S}{x} \quad{ }^{4} L, S$			How to use the table: parse (x, x)				
				Input				Action				
No cell with >1 action $=>$ LR(0)								1	(x, x) \$	Shift 3		
								1 (3	$\mathrm{x}, \mathrm{x})$ \$	Shift 2		
								1 (3 x2	, x) \$	Reduce 2		
	()			x		\$	S	L	1 (3 S7	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8		
2	r2	r2	r2 s2	r2	r2	g7	g5	1 (3 L5,8	x) $\$$	Shift 2		
4								1 ($3 \mathrm{~L} 5,8 \times 2$) \$	Reduce 2		
5		s6		s8				1 ($3 \mathrm{~L} 5,8 \mathrm{~S} 9$) \$	Reduce 4		
6	r1	r1	${ }^{1}$	r1	${ }^{1} 1$			1 (3 L5) \$	Shift 6		
7	r3	r3	r3	r3	r3			$1(3 \mathrm{~L} 5) 6$	\$	Reduce 1		
8		s3	s2			g9		1 (3 L5)6	\$	Reduce 1		
9	r4	r4	r4	r4	r4			1 S ?	\$			

LR(0) parsing table

LR(0) parsing table

$\begin{aligned} & S^{\prime} \xrightarrow{0} S \$ \\ & S \xrightarrow{\rightarrow}(L) \end{aligned}$			$\begin{aligned} & \mathrm{S} \stackrel{2}{\rightarrow} \\ & \mathrm{~L} \xrightarrow{3} \end{aligned}$		$\begin{array}{ll} \mathrm{x} & \mathrm{~L} \xrightarrow{4} \mathrm{~L}, \mathrm{~S} \\ \hline \end{array}$			How to use the table: parse (x, x)				
				Input				Action				
No cell with >1 action $=>$ LR(0)								1	(x, x) \$	Shift 3		
								1 (3	$\mathrm{x}, \mathrm{x})$ \$	Shift 2		
								1 (3 x2	, x) \$	Reduce 2		
	()			x		\$	s	L	1 (3 S7	, x) \$	Reduce 3
1	s3		s2			g4		1 (3 L5	, x) \$	Shift 8		
2	r2	r2	r2 s2	r2	r2	g7	g5	1 (3 L5 , 8	x) $\$$	Shift 2		
4					acc			1 ($3 \mathrm{~L} 5,8 \times 2$) \$	Reduce 2		
5		s6		s8				1 (3 L5 , 8 S9) \$	Reduce 4		
6	r1	r1	r1	r1	r1			1 (3 L5) \$	Shift 6		
7	r3	r3	r3	r3	r3	99		$1(3 \mathrm{~L} 5) 6$)	Reduce 1		
8		s3	s2			g						
9	r4	r4	r4	r4	r4			1 S4	\$	Accept		

Another Example (3.23 in book)

Do on blackboard

$$
\begin{array}{ll}
\mathrm{S} \xrightarrow{0} \mathrm{E} \$ \\
\mathrm{E} \rightarrow \mathrm{E} \\
\mathrm{E}+\mathrm{E} & \mathrm{~T} \xrightarrow{3} \mathrm{~T} \\
\hline
\end{array}
$$

Another Example (3.23 in book)

Another Example - SLR

Can make grammar bottom-up parsable using more powerful parsing techniques: SLR (Simple LR)

- Use same $\operatorname{LR}(0)$ states.
- $A \rightarrow \gamma . \Rightarrow \operatorname{table}[i, T]=\operatorname{reduce}(k)$, for all terminas $T \in \operatorname{follow}(A)$

Compare to $\mathrm{LR}(0)$ rule for filling parse table:
$\bullet \Delta \rightarrow \gamma . \Rightarrow \operatorname{table}[i, T]=\mathrm{r} k$, fo all terminals T

Another Example - SLR

	x	+	\$	E	T
1	s5			g2	g3
2					
3	r2	4,	r2		
4	s5			g6	g3
5	r3	r3	r3		
6	r1	r1	r1		

	nullable	first	follow
S	$?$	$?$	$?$
E	$?$	$?$	$?$
T	$?$	$?$	$?$

Another Example - SLR

	x	+	\$	E	T
1	s5			g2	g3
2					
3	r2		r2		
4	s5			g6	g3
5	r3	r3	r3		
6	r1	r1	r1		

	nullable	first	follow
S	No	x	
E	No	x	$\$$
T	No	x	$+\$$

No conflicts - grammar is SLR!

	\mathbf{x}	$\mathbf{+}$	\$	E	T
1	s 5			g 2	g 3
2			accept		
3		$s 4$	r2		
4	$s 5$			g	g
5		$r 3$	r 3		
6			$r 1$		

Yet Another Example

Sometimes grammar can't be parsed using SLR techniques.

$$
\begin{array}{lll}
1 S^{\prime} \rightarrow S \$ & 3 S \rightarrow E & 5 V \rightarrow \mathrm{x} \\
2 S \rightarrow V=E & 4 E \rightarrow V & 6 V \rightarrow * E
\end{array}
$$

This grammar is not SLR. Need more powerful parsing algorithm $\Rightarrow \mathrm{LR}(1)$

LR(1) Parsing

- $\operatorname{LR}(1)$ item consists of two components: $(A \rightarrow \alpha . \beta, x)$

1. Production
2. Lookahead symbol (x)

- α is on top of stack, head of input is string derivable from $\beta \mathrm{x}$.

LR(0) closure computation

- Initial: $A \rightarrow \alpha . X$
- Add all items $X \rightarrow . \gamma$
- Repeat closure computation

LR(1) closure computation

- Initial: $A \rightarrow \alpha . X \beta, \mathrm{z}$
- Add all items $(X \rightarrow . \gamma, \omega$) for each $\omega \in \operatorname{first}(\beta z)$
- Repeat closure computation
- shift, goto, accept table entries computed same way as LR(0)/SLR.
- reduce entries computed differently:

$$
A \rightarrow \gamma ., \mathrm{z} \Rightarrow \operatorname{table}[i, \mathrm{z}]=\operatorname{reduce}(k)
$$

Initial item as in LR(0); lookahead? arbitrary since first $(\$ z)=\{\$\}$ for all z.

Closure similar to $\operatorname{LR}(0)$, but with lookahead $\$$.

Repeated closure yields two new items, with new lookaheads.

LR(1) example

LR(1) example

LR(1) example

Closure yields second item for same rule, but different cursor position.

LR(1) example

LR(1) example

LR(1) example

LR(1) example

LR (1) parsing table

shift as before: when dot is before terminal, ie transition marked by terminal.

LR(1) parsing table

LR (1) parsing table

accept as before: when dot is before $\$$.

LR(1) parsing table

1	$s 8$	$s 6$			$g 2$	$g 5$	$g 3$
2				acc			
3			$s 4$	r3			
4	$s 11$	$s 13$				$g 9$	$g 7$
5							
6	$s 8$	$s 6$				$g 10$	$g 12$
7							
8							
9							
10							
11							
12							
13	$s 11$	$s 13$				$g 14$	$g 7$
14							

reduce n : when dot is at end of item for rule n with lookahead t in state X, add reduce n in cell (X, t).

LR(1) parsing table

LR (1) parsing table

No duplicate entries $\boldsymbol{\rightarrow}$ Grammar is $\operatorname{LR}(1)$!

$\operatorname{LALR}(1)$

- Problem with LR(1) parsers: tables too large!
- Can make smaller table by merging states whose items are identical except for look-ahead sets \Rightarrow LALR(1) (Look-Ahead LR(1)).
- LALR(1) transition table may contain shift-reduce/reduce-reduce conflicts where LR(1) table has none.

Parsing Power

ML-YACC uses LALR(1) parsing because reasonable programming languages can be specified by an LALR (1) grammar. (Figure from MCI in ML.)

Parsing Error Recovery

Syntax Errors:

- A Syntax Error occurs when stream of tokens is an invalid string.
- In $\operatorname{LL}(\mathrm{k})$ or $\mathrm{LR}(\mathrm{k})$ parsing tables, blank entries refer to syntax errors.

How should syntax errors be handled?

1. Report error, terminate compilation \Rightarrow not user friendly
2. Report error, recover from error, search for more errors \Rightarrow better

Error Recovery

Error Recovery: process of adjusting input stream so that parsing may resume after syntax error reported.

- Deletion of token types from input stream
- Insertion of token types
- Substitution of token types

Two classes of recovery:

1. Local Recovery: adjust input at point where error was detected.
2. Global Recovery: adjust input before point where error was detected.

These may be applied to both LL and LR parsing techniques.

LL Local Error Recovery

Consider LL(1) parsing context:

$$
\begin{array}{lll}
Z \rightarrow X Y Z & Y \rightarrow \mathrm{c} & X \rightarrow \mathrm{a} \\
Z \rightarrow \mathrm{~d} & Y \rightarrow \epsilon & X \rightarrow \mathrm{~b} Y \mathrm{e}
\end{array}
$$

	nullable	first	follow
Z	no	a,b,d	
Y	yes	c	$\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}$
X	no	a, b	$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

$$
\begin{array}{l|llll}
& \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
\hline Z & Z \rightarrow X Y Z & Z \rightarrow X Y Z & \mathrm{e} \\
Y & Y \rightarrow \epsilon & Y \rightarrow \epsilon & Y \rightarrow c & Z \rightarrow d \\
X & X \rightarrow a & X \rightarrow b Y e & &
\end{array}
$$

LL Local Error Recovery

Local Recovery Technique: in function $A()$, delete token types from input stream until token type in follow(A) found \Rightarrow synchronizing token types.

```
datatype token = a | b | c | d | e;
val tok = ref(getToken());
fun advance() = tok := getToken();
fun eat(t) = if(!tok = t) then advance() else error();
and X() = case !tok of
        a => (eat(a))
        b => (eat(b); Y(); eat(e))
    c => (print "error!"; skipTo[a,b,c,d])
    d => (print "error!"; skipTo[a,b,c,d])
    e => (print "error!"; skipTo[a,b,c,d])
and skipTo(synchTokens) =
    if member(!tok, synchTokens) then ()
    else (eat(!tok); skipTo(synchTokens))
```


LR Local Error Recovery

Example:

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{ID} & \mathrm{E} \rightarrow(\mathrm{ES}) \\
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} & \mathrm{ES} \rightarrow \mathrm{E}
\end{array} \mathrm{ES} \rightarrow \mathrm{ES} ; \mathrm{E}
$$

- match a sequence of erroneous input tokens using the error token - a fresh terminal
- preferable: have error followed with synchronizing lookahead token, like RPAREN and SEMI here, by adding rules like this:

$$
\mathrm{E} \rightarrow \text { (error) } \quad \mathrm{ES} \rightarrow \text { error ; } \mathrm{E}
$$

(alternative: add $\mathrm{E} \rightarrow$ error but that does not allow us to skip ahead to RPAREN, SEMI)

LR Local Error Recovery

Example:

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{ID} & \mathrm{E} \rightarrow(\mathrm{ES}) \\
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} & \mathrm{ES} \rightarrow \mathrm{E}
\end{array} \mathrm{ES} \rightarrow \mathrm{ES} ; \mathrm{E}
$$

- match a sequence of erroneous input tokens using the error token - a fresh terminal
- preferable: have error followed with synchronizing lookahead token, like RPAREN and SEMI here, by adding rules like this:

$$
\mathrm{E} \rightarrow \text { (error) } \quad \mathrm{ES} \rightarrow \text { error ; } \mathrm{E}
$$

(alternative: add $\mathrm{E} \rightarrow$ error but that does not allow us to skip ahead to RPAREN, SEMI)

- build parse table for the extended grammar

LR Local Error Recovery

Example:

$$
\begin{array}{ll}
\hline E \rightarrow I D & E \rightarrow(E S) \\
E \rightarrow E+E & E S \rightarrow E S ; E \\
\end{array}
$$

- match a sequence of erroneous input tokens using the error token - a fresh terminal
- preferable: have error followed with synchronizing lookahead token, like RPAREN and SEMI here, by adding rules like this:

$$
\mathrm{E} \rightarrow \text { (error) } \quad \mathrm{ES} \rightarrow \text { error } ; \mathrm{E}
$$

(alternative: add $E \rightarrow$ error but that does not allow us to skip ahead to RPAREN, SEMI)

- build parse table for the extended grammar
- LR parse engine: when trying to read from empty cell,

1. pop the stack until a state is reached in which the action for error is shift
2. do the shift action

LR Local Error Recovery

Example:

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{ID} & \mathrm{E} \rightarrow(\mathrm{ES}) \quad \mathrm{ES} \rightarrow \mathrm{ES} ; \mathrm{E} \\
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} & \mathrm{ES} \rightarrow \mathrm{E}
\end{array}
$$

- match a sequence of erroneous input tokens using the error token - a fresh terminal
- preferable: have error followed with synchronizing lookahead token, like RPAREN and SEMI here, by adding rules like this:

$$
\mathrm{E} \rightarrow \text { (error) } \quad \mathrm{ES} \rightarrow \text { error ; } \mathrm{E}
$$

(alternative: add $\mathrm{E} \rightarrow$ error but that does not allow us to skip ahead to RPAREN, SEMI)

- build parse table for the extended grammar
- LR parse engine: when trying to read from empty cell,

1. pop the stack until a state is reached in which the action for error is shift
2. do the shift action
3. discard the input symbols (if necessary) until a state is reached that has a proper shift/goto/reduce/accept action in the current state (in case we have indeed synchronizing lookahead, this will be a shift action for one of the lookaheads)
4. resume normal parsing

Global Error Recovery

Consider LR(1) parsing:

$$
\text { let type } a:=\text { intArray [10] of } 0 \text { in ... end }
$$

Local Recovery Techniques would:

1. report syntax error at ' $:=$ '
2. substitute ' $=$ ' for ' $:=$ '
3. report syntax error at '['
4. delete token types from input stream, synchronizing on 'in'

Global Recovery Techniques would substitute 'var' for 'type':

- Actual syntax error occurs before point where error was detected.
- ML-Yacc uses global error recovery technique \Rightarrow Burke-Fisher
- Other Yacc versions employ local recovery techniques.

Burke-Fisher

Suppose parser gets stuck at $n^{\text {th }}$ token in input stream.

- Burke-Fisher repairer tries every single-token-type insertion, deletion, and substitution at all points between $(n-k)^{t h}$ and $n^{\text {th }}$ token.

- Best repair: one that allows parser to parse furthest past $n^{t h}$ token.
- If languages has N token types, then:
total \# of repairs $=$ deletions + insertions + substitutions
total \# of repairs $=(k)+(k+1) N+(k)(N-1)$

Burke-Fisher

In order to backup K tokens and reparse repaired input, 2 structures needed:

1. k-length buffer/queue - if parser currently processing $n^{\text {th }}$ token, queue contains tokens $(n-k) \rightarrow(n-1)$. (ML-Yacc $k=15)$
2. old parse stack - if parser currently processing $n^{\text {th }}$ token, old stack represents stack state when parser was processing $(n-k)^{t h}$ token.

- Whenever token shifted onto current stack, also put onto queue tail.
- Simultaneously, queue head removed, shifted onto old stack.
- Whenever token shifted onto either stack, appropriate reductions performed.

Burke-Fisher Example

- Semantic actions are only applied to old stack.
- Not desirable if semantic actions affect lexical analysis.
- Example: typedef in C.
(Figure from MCI/ML.)

Burke-Fisher

For each repair \mathbf{R} that can be applied to token $(n-k) \rightarrow n$:

1. copy queue, copy $n^{\text {th }}$ token
2. copy old parse stack
3. apply R to copy of queue or copy of $n^{\text {th }}$ token
4. reparse queue copy (and copy of $n^{\text {th }}$ token) from old stack copy
5. evaluate R

Choose best repair R, and apply.

Burke-Fisher in ML-YACC

Semantic Values

- Insertions need semantic values

```
%value ID {"bogus"}
%value INT {1}
%value STRING {"STRING")
```


Programmer-Specified Substitutions

- Some single token insertions and deletions are common.
- Some multiple token insertions and deletions are common.

```
%change EQ -> ASSIGN | SEMICOLON ELSE -> ELSE
    -> IN INT END
```

