Topic 2: Lexing and Flexing

COS 320

Compiling Techniques

Princeton University Spring 2016

Lennart Beringer

The Compiler

- Lexical Analysis: Break into tokens (think words, punctuation)
- Syntax Analysis: Parse phrase structure (think document, paragraphs, sentences)
- Semantic Analysis: Calculate meaning

Lexical Analysis

- Goal: break stream of ASCII characters (source/input) into sequence of tokens
- Token: sequence of characters treated as a unit (cf. word)

Lexical Analysis

- Goal: break stream of ASCII characters (source/input) into sequence of tokens
- Token: sequence of characters treated as a unit (cf. word)
- Each token has a token type (cf. classification verb - noun punctuation symbol):

Lexical Analysis

- Goal: break stream of ASCII characters (sourcelinput) into sequence of tokens
- Token: sequence of characters treated as a unit (cf. word)
- Each token has a token type (cf. classification verb - noun punctuation symbol):
IDENTIFIER foo, x, quicksort, ... NUM 1,50,-100

REAL
SEMI
LPAREN (RPAREN)

IF
THEN then

Lexical Analysis

- Goal: break stream of ASCII characters (sourcelinput) into sequence of tokens
- Token: sequence of characters treated as a unit (cf. word)
- Each token has a token type (cf. classification verb - noun punctuation symbol):

IDENTIFIER	foo, x , quicksort, \ldots	NUM	$1,50,-100$
REAL	$6.7,3.9 \mathrm{E}-33,-4.9$	IF	if
SEMI	$\quad ;$	THEN	then
LPAREN	$(\quad$ RPAREN $)$	EQ $=$	PLUS +

- Many tokens have associated semantic information: NUM(1), NUM(50), IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

Lexical Analysis

- Goal: break stream of ASCII characters (sourcelinput) into sequence of tokens
- Token: sequence of characters treated as a unit (cf. word)
- Each token has a token type (cf. classification verb - noun punctuation symbol):

IDENTIFIER	foo, x, quicksort, \ldots	NUM	$1,50,-100$
REAL	$6.7,3.9 \mathrm{E}-33,-4.9$	IF	if
SEMI	$;$	THEN	then
LPAREN	$(\quad$ RPAREN $)$	EQ $=$	PLUS +

- Many tokens have associated semantic information: NUM(1), NUM(50), IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()
- Definition of tokens (mostly) part of language definition
- White space and comments often discarded. Pros/Cons?

Lexical Analysis Example

$$
x=(y+4.0) ;
$$

Lexical Analysis Example

$$
x=(y+4.0) ;
$$

IDENTIFIER(x) EQ LPAREN IDENTIFIER(y) PLUS

NUM(4.0) RPAREN SEMI

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Stream of tokens

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Option 2: eat your own dog food! (use a lexical analyzer generator):
Source: text file

Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch

Option 2: eat your own dog food! (use a lexical analyzer generator)
Source: text file

Q: how do we describe the tokens for $L 1, L 2, \ldots$?
A: using another language, of course!

Theory to the rescue: regular expressions

Some definitions

- An alphabet is a (finite) collection of symbols.

Examples: ASCII, $\{0,1\},\{A, . . Z, ~ a, ~ . . ~ Z\}, ~\{0, . .9\}$

Theory to the rescue: regular expressions

Some definitions

- An alphabet is a (finite) collection of symbols.

Examples: ASCII, $\{0,1\},\{A, . . Z, a, . . Z\},\{0, . .9\}$

- A string/word (over alphabet A) is a finite sequence of symbols from A.

Theory to the rescue: regular expressions

Some definitions

- An alphabet is a (finite) collection of symbols. Examples: ASCII, $\{0,1\},\{A, . . Z, ~ a, ~ . . ~ Z\}, ~\{0, . .9\}$
- A string/word (over alphabet A) is a finite sequence of symbols from A.
- A language (over A) is a (finite or infinite) set of strings over A.

Theory to the rescue: regular expressions

Some definitions

- An alphabet is a (finite) collection of symbols.

Examples: ASCII, $\{0,1\},\{A, . . Z, ~ a, ~ . . ~ Z\}, ~\{0, . .9\}$

- A string/word (over alphabet A) is a finite sequence of symbols from A.
- A language (over A) is a (finite or infinite) set of strings over A.

Examples:

- the ML language: set of all strings representing correct ML programs (infinite)
- the language of ML keywords: set of all strings that are ML keywords (finite)
- the language of ML tokens: set of all strings that map to ML tokens (infinite)

Theory to the rescue: regular expressions

Some definitions

- An alphabet is a (finite) collection of symbols.

Examples: ASCII, $\{0,1\},\{A, . . Z, ~ a, ~ . . ~ Z\}, ~\{0, ~ . . ~ 9\} ~$

- A string/word (over alphabet A) is a finite sequence of symbols from A.
- A language (over A) is a (finite or infinite) set of strings over A.

Examples:

- the ML language: set of all strings representing correct ML programs (infinite)
- the language of ML keywords: set of all strings that are ML keywords (finite)
- the language of ML tokens: set of all strings that map to ML tokens (infinite)

Q: How to describe languages? A(for lexing): regular expressions!

REs are finite descriptions/representations of (certain) finite or infinite languages, including

- the language of a (programming) language's tokens (eg the language of ML tokens)
- the language describing the language of a (programming) language's tokens,
- the language describing ...

Constructing regular expressions

Base cases

Inductive cases: given RE's M and N_{2}

Constructing regular expressions

Base cases

- the RE ε (epsilon): the (finite) language containing only the empty string.
- for each symbol a from A, the RE a denotes the (finite) language containing only the string a.

Inductive cases: given RE's M and N_{2}

Constructing regular expressions

Base cases

- the RE ε (epsilon): the (finite) language containing only the empty string.
- for each symbol a from A, the RE a denotes the (finite) language containing only the string a.

Inductive cases: given RE's M and N_{2}

- the RE M | N (alternation, union) describes the language containing the strings in M or N .
Example: $a \mid b$ denotes the two-element language $\{a, b\}$

Constructing regular expressions

Base cases

- the $\mathrm{RE} \varepsilon$ (epsilon): the (finite) language containing only the empty string.
- for each symbol a from A, the RE a denotes the (finite) language containing only the string a.

Inductive cases: given RE's $\mathrm{M}_{\text {and }} \mathrm{N}_{2}$

- the RE M | N (alternation, union) describes the language containing the strings in M or N .
Example: $a \mid b$ denotes the two-element language $\{a, b\}$
- The RE MN (concatenation) denotes the strings that can be written as the concatenation $m n$ where m in from M and n is from N.
Example: (a|b)(a|c) denotes the language $\{\mathrm{aa}, \mathrm{ac}, \mathrm{ba}, \mathrm{bc}\}$

Constructing regular expressions

Base cases

- the RE ε (epsilon): the (finite) language containing only the empty string.
- for each symbol a from A, the RE a denotes the (finite) language containing only the string a.

Inductive cases: given RE's M and $\mathrm{N}_{\text {, }}$

- the RE M | N (alternation, union) describes the language containing the strings in M or N .
Example: $a \mid b$ denotes the two-element language $\{a, b\}$
- The RE MN (concatenation) denotes the strings that can be written as the concatenation mn where m in from M and n is from N . Example: (a|b)(a|c) denotes the language \{aa, ac, ba, bc\}
- The RE M* (Kleene closure/star) denotes the (infinitely many) strings obtained by concatenating finitely many elements from M. Example: $(a \mid b)^{*}$ denotes the language $\{\varepsilon, a, b, a a, ~ a b, b a, b b, ~ a a a, ~ a a b, ~ a b a, ~ a b b, \ldots\}$

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's: $\quad R E^{a}=$
Strings that with an odd number of b's: $R E^{b}=$

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's:

$$
R E^{a}=b^{*}\left(a b^{*} a b^{*}\right)^{*}
$$

Strings that with an odd number of b's: $R E^{b}=$

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's: $\quad R E^{a}=b^{*}\left(a b^{*} a b^{*}\right)^{*}$
Strings that with an odd number of b's: $\quad R E^{b}=a^{*} b a^{*}\left(b a^{*} b a^{*}\right)^{*}$

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's: $\quad R E^{a}=b^{*}\left(a b^{*} a b^{*}\right)^{*}$
Strings that with an odd number of b's: $\quad R E^{b}=a^{*} b a^{*}\left(b a^{*} b a^{*}\right)^{*}$
Strings with an even number of a's
OR an odd number of b's:
$R E^{a, b}=$

Strings that can be split into a string with an even number of a's, followed by a string with an odd number of b's:

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's: $\quad R E^{a}=b^{*}\left(a b^{*} a b^{*}\right)^{*}$
Strings that with an odd number of b's: $\quad R E^{b}=a^{*} b a^{*}\left(b a^{*} b a^{*}\right)^{*}$
Strings with an even number of a's
OR an odd number of b's:

$$
R E^{a, b}=R E^{a} \mid R E^{b}
$$

Strings that can be split into a string with an even number of a's, followed by a string with an odd number of b's:

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's: $\quad R E^{a}=b^{*}\left(a b^{*} a b^{*}\right)^{*}$
Strings that with an odd number of b's: $\quad R E^{b}=a^{*} b a^{*}\left(b a^{*} b a^{*}\right)^{*}$
Strings with an even number of a's OR an odd number of b's:

$$
R E^{a, b}=R E^{a} \mid R E^{b}
$$

Strings that can be split into a string with an even number of a's, followed by a string $\quad R E_{a, b}=R E^{a}$ $R E^{b}$ with an odd number of b's:

Regular Expression Examples

For alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$:
Strings with an even number of a's: $\quad R E^{a}=b^{*}\left(a b^{*} a b^{*}\right)^{*}$
Strings with an odd number of b's:

$$
R E^{b}=a^{*} b a^{*}\left(b a^{*} b a^{*}\right)^{*}
$$

Strings with an even number of a's OR an odd number of b's:

$$
R E^{a, b}=R E^{a} \mid R E^{b}
$$

Strings that can be split into a string with an even number of a's, followed by a string $\quad R E_{a, b}=R E^{a}$ $R E^{b}$ with an odd number of b's:

Optional Homework:
Strings with an even number of a's and an odd number of b's....

Finite automata (aka finite state machines, FSM's): a computational model of machines with finite memory

Components of an automaton over alphabet A :

- a finite set \mathbf{S} of nodes ("states")
- a set of directed edges ("transitions") $\mathbf{s} \xrightarrow{\mathrm{a}} \mathrm{t}$, each linking two states and labeled with a symbol from A
- a designated start state s0 from S, indicated by "arrow from nowhere"
- a nonempty set of final ("accepting") states (indicated by double circle)

Finite Automata recognize languages

Definition: the language recognized by an FA is the set of (finite) strings it accepts.

Q: how does the finite automaton \mathbf{D} accept a string A?

A: follow the transitions:

1. start in the start state $\mathbf{s} 0$ and inspect the first symbol, a1
2. when in state \mathbf{s} and inspecting symbol a, traverse one edge labeled a to get to the next state. Look at the next symbol.
3. After reading in all \mathbf{n} symbols: if the current state \mathbf{s} is a final one, accept. Otherwise, reject.
4. whenever there's no edge whose label matches the next symbol: reject.

Classes of Finite Automata

Deterministic finite automaton (DFA)

- all edges leaving a node are uniquely labeled.

Nondeterministic finite automaton (NFA)

- two (or more) edges leaving a node may be identically uniquely labeled. Any choice that leads to acceptance is fine.
- edges may also be labeled with ε. So can "jump" to the next state without consuming an input symbol.

Classes of Finite Automata

Deterministic finite automaton (DFA)

- all edges leaving a node are uniquely labeled.

Nondeterministic finite automaton (NFA)

- two (or more) edges leaving a node may be identically uniquely labeled. Any choice that leads to acceptance is fine.
- edges may also be labeled with ε. So can "jump" to the next state without consuming an input symbol.

Strategy for obtaining a DFA that recognizes exactly the language described by an RE:

1. convert RE into an NFA that recognizes the language
2. transform the NFA into an equivalent DFA

NFA Examples
Over alphabet \{a, b\}:

Strings with an even number of a's:

Strings with an odd number of b's:

NFA Examples

Over alphabet $\{\mathrm{a}, \mathrm{b}\}$:

Strings with an even number of a's:

Strings with an odd number of b's:

NFA Examples (adhoc)
Over alphabet \{a, b\}:

Strings with an even number of a's:

$$
D^{a}:
$$

Strings with an odd number of b's:

Can we systematically generate NFA's from RE's?

RE to NFA Rules

RE to NFA Rules

RE to NFA Rules

RE to NFA Rules

RE to NFA Conversion: examples for | and concat

Strings with an even number of a's OR an odd number of b's: $R E^{a} \mid R E^{b}$

Strings that can be split into a string with an even number of a's, followed by a string with an odd number of b's:

$$
R E^{a} R E^{b}
$$

RE to NFA Conversion: examples for | and concat

Strings with an even number of a's OR an odd number of b's: $R E^{a} \mid R E^{b}$

Strings that can be split into a string with an even number of a's followed by a string with an odd number of b's:

$$
R E^{a} R E^{b}
$$

Idea:

- combine identically labeled NFA transitions
- DFA states represent sets of "equivalent" NFA states

NFA to DFA conversion

Auxiliary definitions:

$$
\operatorname{edge}(s, a)=\{t \mid s \xrightarrow{a} t\}
$$

set of NFA states reachable from NFA state s by an a step

$$
\text { closure(S) }=S U(\underset{S \in S}{U} \text { edge(s, } \varepsilon))
$$

set of NFA states reachable from any s ϵ S by an ε step

Main calculation:

$$
\text { DFA-edge(D,a) }=\text { closure }(\underset{S \in D}{U} \operatorname{edge}(\mathrm{~s}, \mathrm{a}))
$$

set of NFA states reachable from D by making one a step and (then) any number of ε steps

NFA to DFA Example

NFA to DFA Example

Step 1: closure sets

$$
\begin{gathered}
1:\{1\} \\
2:\{2\} \\
3:\{3,5\} \\
4:\{4,6\} \\
5:\{5\} \\
6:\{6\} \\
\hline
\end{gathered}
$$

$\xrightarrow[{\{t \mid s \xrightarrow{\text { a }} \mathrm{t} \text { edge } \mathrm{s}, \mathrm{a}})]{ }$

NFA to DFA Example

NFA to DFA Example

edge(s, a)
$\{t \mid s \xrightarrow{a} t\}$

DFA-edge(D,a)

closure($\underset{s \in D}{U}$ edge($\mathrm{s}, \mathrm{a})$)

NFA to DFA Example

Step 4:

Transition matrix

	\mathbf{D}	\mathbf{a}	\mathbf{b}	c
A	$\{1\}$	$\mathrm{Cl}(2)+\mathrm{Cl}(3)$ $=\{2,3,5\}$	$\}$	$\}$
B	$\{2,3,5\}$	$\}$	$\mathrm{Cl}(2)+\mathrm{Cl}(4)$ $=\{2,4,6\}$	$\mathrm{Cl}(4)+\mathrm{Cl}(6)$ $=\{4,6\}$
C	$\{2,4,6\}$	$\}$	$\mathrm{Cl}(4)=\{4,6\}$	$\}$
D	$\{4,6\}$	$\}$	$\}$	$\}$

NFA to DFA Example

Step 5:
Initial state: closure of initial NFA state

	\mathbf{D}	\mathbf{a}	\mathbf{b}	c
A	$\{1\}$	$\mathrm{Cl}(2)+\mathrm{Cl}(3)$ $=\{2,3,5\}$	$\}$	$\}$
B	$\{2,3,5\}$	$\}$	$\mathrm{Cl}(2)+\mathrm{Cl}(4)$ $=\{2,4,6\}$	$\mathrm{Cl}(4)+\mathrm{Cl}(6)$ $=\{4,6\}$
C	$\{2,4,6\}$	$\}$	$\mathrm{Cl}(4)=\{4,6\}$	$\}$
D	$\{4,6\}$	$\}$	$\}$	$\}$

NFA to DFA Example

Step 6:

 Final state(s): DFA states "containing" a final NFA state| | D | a | b | c |
| :--- | :--- | :--- | :--- | :--- |
| A | $\{1\}$ | $\mathrm{Cl}(2)+\mathrm{Cl}(3)$
 $=\{2,3,5\}$ | $\}$ | $\}$ |
| B | $\{2,3,5\}$ | $\}$ | $\mathrm{Cl}(2)+\mathrm{Cl}(4)$
 $=\{2,4,6\}$ | $\mathrm{Cl}(4)+\mathrm{Cl}(6)$
 $=\{4,6\}$ |
| C | $\{2,4,6\}$ | $\}$ | $\mathrm{Cl}(4)=\{4,6\}$ | $\}$ |
| D | $\{4,6\}$ | $\}$ | $\}$ | $\}$ |

st Algorithm in pseudo-code: Appel, page 27

The Longest Token

Lexer should identify the longest matching token:
ifz8 should be lexed as IDENTIFIER, not as two tokens IF, IDENTIFIER

Hence, the implementation

- saves the most recently encountered accepting state of the DFA (and the corresponding stream position) and
- updates this info when passing through another accepting state
- Uses the order of rules as tie-breaker in case several tokens (of equal length) match

Other Useful Techniques

Read Chapters 1 and 2.
Equivalent states:

- Eliminate redundant states, smaller FA.
- Do Exercise 2.6 (hand in optional).

FA \rightarrow RE:

- Useful to confirm correct RE \rightarrow FA. (see exercise 2.7)
- GNFAs! (generalized NFA's: transitions may be labeled with RE's)
- See: Introduction to the Theory of Computation by Michael Sipser

Summary

- Motivated use of lexer generators for partitioning input stream into tokens
- Three formalisms for describing and
 implementing lexers:
- Regular expressions
- NFA's
- DFA's
- Conversions RE -> NFA -> DFA
- Next lecture: practicalities of lexing (ML-LEX)

The Compiler

- Lexical Analysis: Break into tokens (think words, punctuation)
- Syntax Analysis: Parse phrase structure (think document, paragraphs, sentences)
- Semantic Analysis: Calculate meaning

Practicalities of lexing: ML Lex, Lex, Flex, ...

The first phase of a compiler is called the Lexical Analyzer or Lexer.

Implementation Options:

1. Write Lexer from scratch.
2. Use Lexical Analyzer Generator.

- ml-lex is a lexical analyzer generator for ML.
- lex and flex are lexical analyzer generators for C.

ML Lex: lexer generator for ML (similar tools for C: lex, flex)

- Input to ml-lex is a set of rules specifying a lexical analyzer.
- Output from ml-lex is a lexical analyzer in ML.
- A rule consists of a pattern and an action:
- Pattern is a regular expression.
- Action is a fragment of ordinary ML code. (Typically returns a token type to calling function.)
- Examples:

```
if => (print("Found token IF"));
[0-9]+ => (print("Found token NUM"));
```

- General Idea: When prefix of input matches a pattern, the action is executed.

Lexical Specification

Specification of a lexer has three parts:

User Declarations
 \%\%
 ML-LEX Definitions
 \%\%
 Rules

User declarations:

- definitions of values to be used in the action fragments of rules
- Two values must be defined in the section:
- type lexresult: type of the value returned by the rule actions
- fun eof(): function to be called by the generated lexer when end of input stream is reached (eg call parser, print "done")

Lexical Specification

Specification of a lexer has three parts:
User Declarations
\%\%

ML-LEX Definitions

\%\%
Rules

ML-LEX Definitions:

- definitions of regular expressions abbreviations:

DIGITS=[0..9]+; LETTER = [a-zA-Z];

- definitions of start states to permit multiple lexers to run together: \%s STATE1 STATE2 STATE3;
Example: entering "comment" mode, e.g. for supporting nested comments

Lexical Specification

Specification of a lexer has three parts:

User Declarations

\%\%

ML-LEX Definitions
\%\%
Rules
optional, states must be defined in
ML-LEX section
reg.expr

a token and return it to the invoking function)

Rules:

- format: <start-state-list> pattern => (action_code);
- Intuitive reading: if you're in state mode, lex strings matching the pattern as described by the action.

Rule Patterns

symbol	matches
a	individual character "a" (not for reserved chars ?,*,+,[,\{)
	reserved character \{
[abc]	$\mathrm{a}\|\mathrm{b}\| \mathrm{c}$
[a-zA-Z]	lowercase and capital letters
	any character except new line
$\backslash \mathrm{n}$	newline
$\backslash \mathrm{t}$	tab
"abc?"	abc? taken literally (reserved chars as well)
\{LETTER\}	Use abbreviation LETTER defined in ML-LEX Definitions
a*	0 or more a's
a^{+}	1 or more a's
a ?	0 or 1 a
$\mathrm{a} \mid \mathrm{b}$	a or b
if\|iff	=> (print("Found token IF or IFF"));
[0-9] +	=> (print("Found token NUM"));

Rule Actions

- Actions can use various values defined in User Declarations section.
- Two values always available:

```
    type lexresult
    - type of the value returned by each rule action.
    fun eof()
    - called by lexer when end of input stream reached.
```

- Several special variables also available to action fragments.
- yytext - input substring matched by regular expression.
- yypos - file position of beginning of matched string.
- continue () - recursively calls lexing engine.

Start States

- Start states permit multiple lexical analyzers to run together.
- Rules prefixed with a start state is matched only when lexer is in that state.
- States are entered with YYBEGIN.
- Example:

```
%%
%s COMMENT
%%
<INITIAL> if => (print("Token IF"));
<INITIAL> [a-z]+ => (print("Token ID"));
<INITIAL> "(*" => (YYBEGIN COMMENT; continue());
<COMMENT> "*)" => (YYBEGIN INITIAL; continue());
<COMMENT> "\n"|. => (continue());
```


Rule Matching and Start States

<start_state_list> regular_expression => (action_code);

- Regular expression matched only if lexer is in one of the start states in start state list.
- If no start state list specified, the rule matches in all states.
- Lexer begins in predefined start state: INITIAL

If multiple rules match in current start state, use Rule Disambiguation.

Rule Disambiguation

- Longest match - longest initial substring of input that matches regular expression is taken as next token.
if8 matches ID('`if8''), not IF () and NUM (8).
- Rule priority - for a particular substring which matches more than one regular expression with equal length, choose first regular expression in rules section.

If we want if to match IF (), not ID(''if''), put keyword regular expression before identifier regular expression.

Example

```
(* -*- ml -*_ *)
type lexresult = string
fun eof() = (print("End-of-file\n"); "EOF")
%%
INT=[1-9][0-9] *;
%S COMMENT;
%%
<INITIAL>"/*" => (YYBEGIN COMMENT; continue());
<COMMENT>"*/" => (YYBEGIN INITIAL; continue());
<COMMENT>"\n"|. => (continue ());
<INITIAL>if => (print("Token IF\n");"IF");
<INITIAL>then => (print("Token THEN\n");"THEN");
<INITIAL>{INT} => (print("Token INT(" ^ yytext ^ ")\n");"INT");
<INITIAL>" "|"\n"|"\t" => (continue());
<INITIAL>.
```

```
=> (print("ERR: '" ^ yytext ^ "'.\n");"ERR");
```

```
=> (print("ERR: '" ^ yytext ^ "'.\n");"ERR");
```


Example in Action

```
% cat x.txt
if 999 then 0999
/* This is a comment 099 if */
if 12 then 12
% sml
Standard ML of New Jersey, Version 109.33, November 21, 1997 [CM; ...]
- CM.make();
[.....]
val it = () : unit
- MyLexer.tokenize("x.txt");
Token IF
Token INT(999)
Token THEN
ERR: '0'.
Token INT(999)
Token IF
Token INT(12)
Token THEN
Token INT(12)
End-of-file
val it = () : unit
```

