
1

Topic 2:  Lexing and Flexing

COS 320

Compiling Techniques

Princeton University 
Spring 2016

Lennart Beringer



2

The Compiler
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Lexical Analysis

• Goal: break stream of ASCII characters (source/input) into 

sequence of tokens

• Token: sequence of characters treated as a unit (cf. word)

• Each token has a token type (cf. classification verb - noun -

punctuation symbol):

IDENTIFIER

REAL

LPAREN

SEMI

IF

NUM

THEN

RPAREN

foo, x, quicksort, …

6.7, 3.9E-33, -4.9

;

(

1, 50, -100

if

then

)

• Many tokens have associated semantic information: NUM(1), NUM(50), 

IDENTIFIER(foo), IDENTIFIER(x), but typically not SEMI(;), LPAREN(()

• White space and comments often discarded. Pros/Cons?

• Definition of tokens (mostly) part of language definition

PLUSEQ = +

…
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Lexical Analysis Example
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Lexical Analysis Example

EQ

NUM(4.0)

IDENTIFIER(x) IDENTIFIER(y)LPAREN PLUS

RPAREN SEMI
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Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Lexer for language L
Stream of tokensSource: text file
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Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch:

Option 2: eat your own dog food! (use a lexical analyzer generator):

Lexer for language L
Stream of tokensSource: text file

Input: lexing rules for L1 Input: lexing rules for L2

Lexer

for L1

Token stream

wrt L2

Source: text file

Lexer generator

Lexer

for L2

Token stream

wrt L1
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Implementing a Lexical Analyzer (Lexer)

Option 1: write it from scratch

Option 2: eat your own dog food! (use a lexical analyzer generator)

Lexer for language L
Stream of tokensSource: text file

Input: lexing rules for L1 Input: lexing rules for L2

Q: how do we describe the tokens for L1, L2, …?  

Lexer

for L1

Token stream

wrt L2

Source: text file

Lexer generator

Lexer

for L2

Token stream

wrt L1

A: using another language, of course!

Yeah, but how do we describe the tokens of that language???
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Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols. 
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}
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Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols. 
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.
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Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols. 
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

• A language (over A) is a (finite or infinite) set of strings over A.
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Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols. 
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

• A language (over A) is a (finite or infinite) set of strings over A.
Examples:

• the ML language: set of all strings representing correct ML programs (infinite)

• the language of ML keywords: set of all strings that are ML keywords (finite)

• the language of ML tokens: set of all strings that map to ML tokens (infinite)
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Theory to the rescue: regular expressions

Some definitions

• An alphabet is a (finite) collection of symbols. 
Examples: ASCII, {0, 1}, {A, ..Z, a, .. Z}, {0, ..9}

• A string/word (over alphabet A) is a finite sequence of symbols from A.

• A language (over A) is a (finite or infinite) set of strings over A.
Examples:

• the ML language: set of all strings representing correct ML programs (infinite)

• the language of ML keywords: set of all strings that are ML keywords (finite)

• the language of ML tokens: set of all strings that map to ML tokens (infinite)

Q: How to describe languages? A(for lexing): regular expressions!

REs are finite descriptions/representations of (certain) finite or infinite

languages, including
• the language of a (programming) language’s tokens (eg the language of ML tokens)

• the language describing the language of a (programming) language’s tokens,

• the language describing …
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Constructing regular expressions

Base cases

Inductive cases: given RE’s M and N, 
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Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

Inductive cases: given RE’s M and N, 
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Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

• the RE M | N (alternation, union) describes the language

containing the strings in M or N.
Example: a | b denotes the two-element language {a, b}

Inductive cases: given RE’s M and N, 
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Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

• the RE M | N (alternation, union) describes the language

containing the strings in M or N.
Example: a | b denotes the two-element language {a, b}

• The RE MN (concatenation) denotes the strings that can be

written as the concatenation mn where m in from M and n is from N.
Example: (a|b)(a|c) denotes the language {aa, ac, ba, bc}

Inductive cases: given RE’s M and N, 
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Constructing regular expressions

Base cases

• the RE ε (epsilon): the (finite) language containing only the empty string.

• for each symbol a from A, the RE a denotes the (finite) language

containing only the string a.

• the RE M | N (alternation, union) describes the language

containing the strings in M or N.
Example: a | b denotes the two-element language {a, b}

• The RE MN (concatenation) denotes the strings that can be

written as the concatenation mn where m in from M and n is from N.
Example: (a|b)(a|c) denotes the language {aa, ac, ba, bc}

• The RE M* (Kleene closure/star) denotes the (infinitely many) strings

obtained by concatenating finitely many elements from M.
Example: (a|b)* denotes the language {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, …}

Inductive cases: given RE’s M and N, 



Regular Expression Examples

For alphabet  Σ = {a,b}:

Strings with an even number of a’s: RE   =
a

Strings that with an odd number of b’s: RE =
b
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Strings that with an odd number of b’s: RE =
b

Solutions not unique!
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Regular Expression Examples

For alphabet  Σ = {a,b}:

Strings with an even number of a’s: RE   =
a

b* ( a b* a b* )*

Strings with an even number of a’s

OR an odd number of b’s:
RE =

a,b
RE |

a
RE

b

Optional Homework:

Strings with an even number of a’s and an odd number of b’s….

Strings with an odd number of b’s: RE =
b a* b a* (b a* b a*)*

Strings that can be split into a string with

an even number of a’s, followed by a string

with an odd number of b’s:
RE =a,b RE

a
RE

b
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Implementing RE’s: finite automata

RE RE

Lexer

for L1

Token stream

wrt L2

Source: text file

Lexer generator

Lexer

for L2

Token stream

wrt L1

Input: lexing rules for L1 Input: lexing rules for L2

Automaton Automaton

Finite automata (aka finite state machines, FSM’s): 

a computational model of machines with finite memory

Components of an automaton over alphabet A:

• a finite set S of nodes (“states”)

• a set of directed edges (“transitions”) 

s   t, each linking two states and 

labeled with a symbol from A

• a designated start state s0 from S, 

indicated by “arrow from nowhere” 

• a nonempty set of final (“accepting”) 

states (indicated by double circle)

a
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Finite Automata recognize languages

Definition: the language recognized by an FA is the set of (finite) 

strings it accepts.

A: follow the transitions:

1. start in the start state s0 and inspect the first symbol, a1

2. when in state s and inspecting symbol a, traverse one edge 

labeled a to get to the next state. Look at the next symbol.

3. After reading in all n symbols: if the current state s is a final one, 

accept. Otherwise, reject.

4. whenever there’s no edge whose label matches the next symbol: 

reject.

Q: how does the finite automaton D

accept a string A?

a b
a a

b c
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Classes of Finite Automata

Deterministic finite automaton (DFA)

• all edges leaving a node are uniquely labeled. 

Nondeterministic finite automaton (NFA)

• two (or more) edges leaving a node may be identically  

uniquely labeled. Any choice that leads to acceptance is fine.

• edges may also be labeled with  ε. So can “jump” to the next 

state without consuming an input symbol.
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Classes of Finite Automata

Deterministic finite automaton (DFA)

• all edges leaving a node are uniquely labeled. 

Nondeterministic finite automaton (NFA)

• two (or more) edges leaving a node may be identically  

uniquely labeled. Any choice that leads to acceptance is fine.

• edges may also be labeled with  ε. So can “jump” to the next 

state without consuming an input symbol.

Strategy for obtaining a DFA that recognizes exactly the 

language described by an RE:  

1. convert RE into an NFA that recognizes the language

2. transform the NFA into an equivalent DFA
Remember Tuesday’s quiz?



NFA Examples

Strings with an even number of a’s:

Strings with an odd number of b’s:

Over alphabet {a, b}:



NFA Examples

Strings with an even number of a’s: D   :
a

Strings with an odd number of b’s:

a

a

b b

Over alphabet {a, b}:



NFA Examples (adhoc)

Strings with an even number of a’s: D   :
a

Strings with an odd number of b’s:

a

a

b b

b

b

a a

D   :
b

Can we systematically generate NFA’s from RE’s?

Over alphabet {a, b}:
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RE to NFA Rules
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RE to NFA Rules
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RE to NFA Rules
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RE to NFA Rules
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RE to NFA Conversion: examples for | and concat

Strings with an even number of a’s

OR an odd number of b’s: RE |
a

RE
b

a

a

b bb

b

a a

ε

ε

D   
a

D   
b

Strings that can be split into a string with

an even number of a’s, followed by a

string with an odd number of b’s:

RE
a

RE
b

b

a
a

b
b

b

a a

D   
a

D   
b
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RE to NFA Conversion: examples for | and concat

Strings with an even number of a’s

OR an odd number of b’s: RE |
a

RE
b

a

a

b bb

b

a a

ε

ε

D   
a

D   
b

Strings that can be split into a string with

an even number of a’s followed by a

string with an odd number of b’s:

RE
a

RE
b

b

a
a

b
b

b

a a

D   
a

D   
b



43

NFA to DFA Conversion

b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

Idea:

• combine identically labeled NFA transitions

• DFA states represent sets of “equivalent” NFA states
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NFA to DFA conversion

DFA-edge(D,a) = closure(    U   edge(s,a))
s є D

set of NFA states reachable from D by making

one a step and (then) any number of  ε steps

Main calculation:

set of NFA states reachable from NFA state s by an a step

a
edge(s, a) = { t | s t }

set of NFA states reachable from any s є S by an ε step

s є S
closure(S) = S U (    U     edge(s, ε))

Auxiliary definitions:
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NFA to DFA Example

b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

s є S
S U (    U     edge(s, ε))

closure(S)
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NFA to DFA Example

b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

s є S
S U (    U     edge(s, ε))

closure(S)

a
{ t | s t }

edge(s, a)

Step 1: closure sets

1 : {1}

2:{2}

3:{3,5}

4:{4,6}

5:{5}

6:{6}
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NFA to DFA Example
b

1

3

2 4

5

a

ε
a

ε
c

c

b

6

s є S
S U (    U     edge(s, ε))

closure(S)

a
{ t | s t }

edge(s, a) DFA-edge(D,a)

closure(    U   edge(s,a))
s є D

Step 1: 

closure sets

Step 2: edge sets

a b c

1 2,3 - -

2 - 4 -

3 - - -

4 - - -

5 - 2 4,6

6 - - -

1 {1}

2 {2}

3 {3,5}

4 {4,6}

5 {5}

6 {6}



48

NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

s є S
S U (    U     edge(s, ε))

closure(S)

a
{ t | s t }

edge(s, a) DFA-edge(D,a)

closure(    U   edge(s,a))
s є D

Step 3: DFA-sets

a b c

1 2,3 - -

2 - 4 -

3 - - -

4 - - -

5 - 2 4,6

6 - - -

1 {1}

2 {2}

3 {3,5}

4 {4,6}

5 {5}

6 {6}

D a b c

{1} Cl(2) + Cl(3) 
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4) 
= {2,4,6}

Cl(4) + Cl(6) 
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}
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NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

D a b c

{1} Cl(2) + Cl(3) 
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4) 
= {2,4,6}

Cl(4) +Cl(6)
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

A

B

C

D

A
C

B
D

a

b
b

c

Step 4:

Transition matrix
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NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

D a b c

{1} Cl(2) + Cl(3) 
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4) 
= {2,4,6}

Cl(4) + Cl(6) 
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

A

B

C

D

A
C

B
D

a

b
b

c

Step 5:

Initial state: closure of

initial NFA state
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NFA to DFA Example

b

1

3

2 4

5

a

ε
a εc

c
b

6

D a b c

{1} Cl(2) + Cl(3) 
= {2,3,5}

{} {}

{2,3,5} {} Cl(2)+Cl(4) 
= {2,4,6}

Cl(4) + Cl(6)
= {4,6}

{2,4,6} {} Cl(4) = {4,6} {}

{4,6} {} {} {}

A

B

C

D

A
C

B
D

a

b
b

c

Step 6:

Final state(s): DFA

states “containing”

a final NFA state

Algorithm in pseudo-code: Appel, page 27
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The Longest Token

ifz8 should be lexed as IDENTIFIER, not as two tokens IF, IDENTIFIER

Hence, the implementation 

• saves the most recently encountered accepting state of the DFA 

(and the corresponding stream position) and

• updates this info when passing through another accepting state

• Uses the order of rules as tie-breaker in case several tokens (of 

equal length) match

Lexer should identify the longest matching token:
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Other Useful Techniques

(generalized NFA’s: transitions may be labeled with RE’s)

(see exercise 2.7)



Summary

• Motivated use of lexer generators for 
partitioning input stream into tokens

• Three formalisms for describing and 
implementing lexers:

• Regular expressions

• NFA’s

• DFA’s

• Conversions RE -> NFA -> DFA

• Next lecture: practicalities of lexing
(ML-LEX)

54
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The Compiler
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Practicalities of lexing: ML Lex, Lex, Flex, …
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ML Lex: lexer generator for ML (similar tools for C: lex, flex)
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Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%

ML-LEX Definitions

%%

Rules

User declarations:

• definitions of values to be used in the action fragments of rules

• Two values must be defined in the section:

• type lexresult: type of the value returned by the rule actions

• fun eof(): function to be called by the generated lexer when 

end of input stream is reached (eg call parser, print “done”)
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Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%

ML-LEX Definitions

%%

Rules

ML-LEX Definitions:

• definitions of regular expressions abbreviations:

DIGITS=[0..9]+;

LETTER = [a-zA-Z];

• definitions of start states to permit multiple lexers to run together:

%s STATE1 STATE2 STATE3;

Example: entering “comment” mode, e.g. for supporting nested comments 
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Lexical Specification

Specification of a lexer has three parts:

User Declarations

%%

ML-LEX Definitions

%%

Rules

Rules:

• format: <start-state-list> pattern => (action_code);

• Intuitive reading: if you’re in state mode, lex strings matching 

the pattern as described by the action.

optional, states must

be defined in

ML-LEX section reg.expr

ML expression (eg construct

a token and return it to

the invoking function)
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Rule Patterns
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Rule Actions
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Start States
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Rule Matching and Start States
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Rule Disambiguation
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Example
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Example in Action


