Algorithlns ROBERT SEDGEWICK | KEVIN WAYNE

5.5 DATA COMPRESSION

» introduction
» run-length coding
» Huffman compression

» LZW compression

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

5.5 DATA COMPRESSION

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Data compression

Compression reduces the size of a file:
« To save space when storing it.
« To save time when transmitting it.
« Most files have lots of redundancy.

“ Everyday, we create 2.5 quintillion bytes of data—so much that
90% of the data in the world today has been created in the last

two years alone. 7 — IBM report on big data (2011)

Applications

Generic file compression (always lossless).
« Files: GZIP, BZIP, 7z.
« Archivers: PKZIP.
« File systems: NTFS, ZFS, HFS+, ReFS, GFS.

Multimedia (usually lossy).
« Images: CIF, JPEG.
« Sound: MP3.
» Video: MPEG, DivX™, HDTV.

Communication.
« ITU-T T4 Group 3 Fax.
* V.42bis modem.
» Skype, Google hangout.

Databases. Google, Facebook, NSA, GO 8[@

Ui,

Lossless compression and expansion

Message. Bitstream B we want to compress.
Compress. Generates a "compressed" representation C(B).
Expand. Reconstructs original bitstream B.

uses fewer bits
(you hope)

Compress Expand
bitstream B compressed version C(B)

—

original bitstream B

Basic model for data compression

Compression ratio. Bits in C(B) / bits in B.
Ex. 50-75% or better compression ratio for natural language.

Compression before computers

Data compression has been omnipresent since antiquity:
o Number systems.

Data representation: genomic code

Genome. String over the alphabet { A, T, C, G }.
Goal. Encode an N-character genome: ATAGATGCATAG...

Standard ASCIl encoding.
» 8 bits per char.

Two-bit encoding.
« 2 bits per char.

« 8 N bits. « 2 N bits (25% compression ratio).
‘A 41 01000001 A 00
T 54 01010100 b 01
c 43 01000011 c 10
G 47 01000111 G 11

Fixed-length code. k-bit code supports alphabet of size 2*.

© 2
\ 1 ks
« Natural languages. | Z o6
n=1
* Mathematical notation.
It played a central role in communications technology:
« Grade 2 Braille. b r a i 1 1 e
« Morse code. 5 e 83 o8 o3 o5 8¢
00 e 0 00 00 e 0 e 0 [e}e]
. Tele hOneS Stem [o)e) [ole) [eXe) [o)e) jo)e) [ofe) 00
p M . but rather a 1 like like every
Reading and writing binary data
Binary standard input. Read bits from standard input.
public class BinaryStdIn
boolean readBoolean() read 1 bit of data and return as a boolean value

char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

similar methods for byte (8 bits); short (16 bits); int (32 bits); Tong and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

Binary standard output. Write bits to standard output

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char) write the specified 8-bit char

void write(char c, int r) write the r least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); Tong and double (64 bits)]

void close() close the bitstream

Writing binary data

Date representation. Three different ways to represent 12/31/1999.

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

‘ 00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9 80 bits
Three ints (BinaryStdOut)
BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);
‘ 114 11111 11111001111

~
12 31 1999 96 bits

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

110011111011111001111

12 31 1999 ™~ |
21 bits (+3 bits for byte alignment at close)

Binary dumps

Q. How to examine the contents of a bitstream?

Standard character stream Bitstream represented with hex digits

% more abra.txt % java HexDump 4 < abra.txt
ABRACADABRA! 41 42 52 41

43 41 44 41

42 52 41 21
Bitstream represented as 0 and 1 characters 12 bytes

% java BinaryDump 16 < abra.txt

0100000101000010 Bitstream represented as pixels in a Picture
0101001001000001 %5 pi D 16 6 5

e racne) java PictureDump < abra.txt
0100010001000001 [16-by-6 pixel
0100001001010010 window, magnified
0100000100100001

96 bits 96 bits

0] o «®
1

2l [ls[elel T[] [-]-/
s[ofx]23]als]e[7]8]o]:[:[<|=[>]2
alefals[clo[e[F[c[n]z[a]k m][n]o0
s[ple[r]s[T]u]v]w[x[v[z[c[\N[T]A]-
6| [alb[c|d[e[fla][n]i[i[Kk[1]m[n]o
7lelalr]s|t]u|v|w[x|y|z|[{]I][}]|~

Hexadecimal to ASCIl conversion table

Which of these formats are text-based, and which are binary?

HTML

GIF

MPEG

PDF

SVG

Java source code

Java bytecode

Universal data compression

ZeoSync. Announced 100:1 lossless compression of random data using
Zero Space Tuner™ and BinaryAccelerator™ technology.

SCIENCE : DISCOVERIES)

Firm Touts 'Perfect Compression' @:ZeoSync
Declan McCullagh [01.16.02

WASHINGTON - Physicists do not question the laws of thermodynamics. Chemistry researchers
unwaveringly cite Boyle's Law to describe the relationship between gas pressure and temperature.

Computer scientists also have their own fundamental laws, perhaps not as well known, but arguably
even more solid. One of those laws says a perfect compression mechanism is impossible.

Aslightly expanded version of that law says it is mathematically impossible to write a computer
program that can compress all files by at least one bit. Sure, it's possible to write a program to
compress typical data by far more than one bit — that assi i ‘handed to comput
science sophomores, and the technique is used in jpg and .zip files.

But those general techniques, while useful, don't work on all files; otherwise, you could repeatedly
compress a .zip, .gzip or .sit file to nothingness. Put another way, compression techniques can't work
with random data that follow no known patterns.

So when a lttle-known company named ZeoSync announced last week it had achieved perfect
compression - a breakthrough that would be a bombshell roughly as big as e=mc? -- it was greeted
with derision. Their press release was roundly mocked for having more trademarks than a Walt Disney
store, not to mention the more serious sin of being devoid of any technical content or evidence of peer
review.

ZeoSync corporation folds after issuing $40 million in private stock

Quotes from this interview

Wired News: When did you start working on this technology?
Peter St. George: | started developing the technology about a dozen years ago. |
worked on this one problem for 12 years consecutively. This is a project that |

dedicated my life to a dozen years ago.

WN: Let's go into the details. Tell me how it works. It can compress random data?
PSG: If you say absolutely random, it's going to be very hard to agree what

absolutely random is.

WN: How do you get around the conventional wisdom that says simple
mathematics says it's impossible?
PSG: We plan to attack that issue head on. What hasn't been previously proven,

we're proving.

| have one quote I'd like to share with you: "The person who says it cannot be

done should not interrupt the person doing it."

Universal data compression

Proposition. No algorithm can compress every bitstring.

Pf 1. [by contradiction]

ASOK , TAKE THESE
PROJECT SUMMARIES

AND WHEN YOU'RE
DONE, TAKE THAT
SUMMARY AND
SUMMARIZE IT.

WHAT IS A
SHORTER WORD
FOR DOOMED?

AND SUMMARIZE
THEM INTO ONE

SUMMARY.

www.dilbert.com scottadams Gaol.com

Pf 2. [by counting]

* Suppose your algorithm that can compress all 1,000-bit strings.

e 21000 possible bitstrings with 1,000 bits.
e Only 1+2+4+ ... +2%8+2% can be encoded with < 999 bits.

« Similarly, only 1 in 2% bitstrings can be encoded with < 500 bits!

m-cﬁcﬁz%._._cﬁcﬁcﬂ

Universal
data compression?

Can you compress this string of decimal digits?

14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

It’s the first 1000 digits of pi after the decimal point. (But how to compress?)

15

Undecidability

A difficult file to compress: one mi

n (pseudo-) random bits

public class RandomBits

public static void main(String[] args)
{
int x = 11111;
for (int i = 0; i < 1000000; i++)
{
X = x * 314159 + 218281;
BinaryStdOut.write(x > 0);
}
BinaryStdOut.close();

Rdenudcany in Enlgsih Inagugae

Q. How much redundancy in the English language?
A. Quite a bit.

“... randomising letters in the middle of words [has] little or no
effect on the ability of skilled readers to understand the text. This
is easy to denmtrasote. In a pubiltacion of New Scnieitst you
could ramdinose all the letetrs, keipeng the first two and last two
the same, and reibadailty would hadrly be aftcfeed. My ansaylis
did not come to much beucase the thoery at the time was for
shape and senqeuce retigcionon. Saberi's work sugsegts we may
have some pofirweul palrlael prsooscers at work. The resaon for
this is suerly that idnetiyfing coentnt by paarllel prseocsing
speeds up regnicoiton. We only need the first and last two letetrs

to spot chganes in meniang. ” — Graham Rawlinson

The gaol of data cmperisoson is to inetdify rdenudcany and epxloit it.
Aside. Design an algorithm to correct text with letters permuted.

Data compression: quiz 1

Rank these in the order of compressibility:
1. An ASCII text file of Shakespeare’s works

2. A bitmap image of this slide

3. An mp3 file of Justin Bieber’s “Baby”

A, 3>2>1
B. 3>1>2
C. 2>1>3
D. 2>3>1
E. Idon't know.

Compression still active area of research, big improvements possible

Introducing Brotli: a new compression algorithm for the

internet
Tuesday, September 22, 2015

At Google, we think that internet users’ time is valuable, and that they shouldn’t have to wait long for
a web page to load. Because fast is better than slow, two years ago we published the Zopfli
compression algorithm. This received such positive feedback in the industry that it has been
integrated into many compression solutions, ranging from PNG optimizers to preprocessing web
content. Based on its use and other modern compression needs, such as web font compression,
today we are excited to announce that we have developed and open sourced a new algorithm, the_
Brotli compression algorithm.

While Zopfli is Deflate-compatible, Brotli is a whole new data format. This new format allows us to get
20-26% higher compression ratios over Zopfli. In our study ‘Comparison of Brotli, Deflate. Zopfili.
LZMA, LZHAM and Bzip2 Compression Algorithms’ we show that Brotli is roughly as fast as zlib's

Deflate implementation. At the same time, it compresses slightly more densely than LZMA and bzip2
on the Canterbury corpus. The higher data density is achieved by a 2nd order context modeling,
re-use of entropy codes, larger memory window of past data and joint distribution codes. Just like
Zopfli, the new algorithm is named after Swiss bakery products. Brotli means ‘small bread’ in Swiss
German.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

5.5 DATA COMPRESSION

» run-length coding

Run-length encoding

Simple type of redundancy in a bitstream. Long runs of repeated bits.
0000000000000001111111000000011111111111
™ 40 bits
Representation. 4-bit counts to represent alternating runs of Os and 1s:
15 Os, then 7 1s, then 7 Os, then 11 1s.
1111011101111011 «— 16 bits (instead of 40)

15 7 7 1

Q. How many bits to store the counts?
A. We typically use 8 (but 4 in the example above for brevity).

Q. What to do when run length exceeds max count?
A. Intersperse runs of length 0.

Applications. JPEG, ITU-T T4 Group 3 Fax, ...

Data compression: quiz 2

What is the best compression ratio achievable from run-length coding

when using 8-bit counts?

A. 1/256

B. 1/16

C. 8/255

D. 24/510= 4/85
E. Idon't know.

5.5 DATA COMPRESSION

» Huffman compression

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

David Huffman

Variable-length codes

Use different number of bits to encode different chars.

Assign shorter codes to more common chars.
Ex. Morse code: eee—— e
Issue. Ambiguity.

S0s?
V7 ?

In practice. Use a medium gap to

codeword for S is a prefix :
of codeword for V

separate codewords.

N-<><g<:—|wzo'vozzr>v'-:m'ﬂmunm>g
|
|

Variable-length codes

Q. How do we avoid ambiguity?

A. Ensure that no codeword is a prefix of another.

Ex 1. Fixed-length code.

Ex 2. Append special stop character to each codeword.

Ex 3. General prefix-free code.

Codeword table
key

ey value
1101
A0

B 1111
c 110
D 100
R 1110

Compressed bitstring
011111110011001000111111100101 <—30 bits

Codeword table
key value
101
11
00
010
100
011

mon®> -7

Compressed bitstring

AB RA CA DAB

Prefix-free codes: trie representation

Q. How to represent the prefix-free code?

A. A binary trie!
« Characters in leaves.

» Codeword is path from root to leaf.

Codeword table Trie representation

< Trie
key - value key value
! U101
A0 A 11
B 1111 B 00
c 110 c o0
D 100 0 100
R 1110 R o1l

Compressed bitstring
011111110011001000111111100101 <—30 bits

Compressed bitstring

AB RA CA DAB RA !

25
Prefix-free codes: expansion
Expansion.
« Start at root.
« Go leftif bit is 0; go right if 1.
« If leaf node, write character; return to root node; repeat.
Q. Why would this fail if the code isn’t prefix-free?
A. Internal nodes also have chars, but decompressor will never output them.
Codeword table Trie representation
Codeword table Trie representation
key. value key value
Lol 1101
A0 A 11
B 1111 B 00
E 1;2 oA C 010
D 100
R 1110 01 R 011
(R) (BY
Compressed bitstring Compressed bitstring
011111110011001000111111100101 ~—30 bits 11000111101011100110001111101 ~—29 bits
AT B RA CA DA B RA | AB RA CA DAB RA !
27

Prefix-free codes: compression

Compression: create ST of key-value pairs.

Codeword table

value

Compressed bitstring

011111110011001000111111100101 <—30 bits

Trie representation

1101 1101
A 0 A 11
B 1111 B 00
C 110 C o010
D 100 D 100
R 1110 R o011

Codeword table

Trie representation

key value

AB RA CA DAB RA !

Data compression: quiz 3

Consider the following trie representation of a prefix-free code.
Expand the compressed bitstring 100101000111011.

PEED p\
PESDEY
SPED Q

SPEEDY ;:z/ ?:2

I don't know.

m o n ® »

R

Huffman coding overview

Static model. Use the same prefix-free code for all messages.
Dynamic model. Use a custom prefix-free code for each message.

Compression.
» Read message.
« Build best prefix-free code for message. How?
« Write prefix-free code (as a trie).
« Compress message using prefix-free code.

Expansion.
« Read prefix-free code (as a trie) from file.
« Read compressed message and expand using trie.

Prefix-free codes: how to transmit

Q. How to write the trie?
A. Write preorder traversal of trie; mark leaf and internal nodes with a bit.

leaves
D 4 ! 4 C 4y R 4 B

0101000001001010001000100001010101000011(?101010010101000010

t tt 1

1 23 4 s < internal nodes

Using preorder traversal to encode a trie as a bitstream

Note. If message is long, overhead of transmitting trie is small.

Prefix-free codes: how to transmit

Q. How to write the trie?
A. Write preorder traversal of trie; mark leaf and internal nodes with a bit.

private static void writeTrie(Node x)
{
if (x.isLeaf())
{
BinaryStdOut.write(true);
BinaryStdOut.write(???);
return;
}
BinaryStdOut.write(false);
leaves writeTrie(??7);
A b 4! 4y C R _|_B writeTrie(???);
?10100000100101000100?1000010101010000114?101010010101000010 }
tt

1 23 4 s < internal nodes

Using preorder traversal to encode a trie as a bitstream

private static class Node implements Comparable<Node>

{
private final char ch; // used only for leaf nodes
private final int freq; // used only by compress(
private final Node left, right;

}

Prefix-free codes: how to transmit

Q. How to write the trie?
A. Write preorder traversal of trie; mark leaf and internal nodes with a bit.

private static void writeTrie(Node x)

preorder

traversal

if (x.isLeaf())

{
BinaryStdOut.write(true);
BinaryStdOut.write(x.ch, 8);
return;

}

BinaryStdOut.write(false);

leaves writeTrie(x.left);

1_A D L & VR 4 B writeTrie(x.right);
?101000001??101000100?100001010101000011?101010010101000010 1

1 23 4 s < internal nodes

Using preorder traversal to encode a trie as a bitstream

private static class Node implements Comparable<Node>
{
private final char ch; // used only for Teaf nodes
private final int freq; // used only by compress()
private final Node left, right;

Prefix-free codes: how to transmit

Q. How to read in the trie?
A. Reconstruct from preorder traversal

leaves

of trie.

private static Node readTrie()

{
if (BinaryStdIn.readBoolean())
{

char c = BinaryStdIn.readChar(8);
return new Node(c, 0, null, null);

Node x = readTrie(Q);
Node y = readTrie(Q;
return new Node('\0', 0, x, y);

Huffman codes

Q. How to find best prefix-free code? @

Huffman algorithm:
e Count frequency freq[i] for each char i in input.
» Start with one node corresponding to each char i (with weight freq[i]).
« Repeat until single trie formed:
- select two tries with min weight freq[i] and freq[j]
- merge into single trie with weight freq[i] + freq[j]

Applications:

),

|1 @ps DX "'m

JPEG

D | €C _{_R | _B 3
01010000010010100010001000010101010000110101010010101000010 arbitrary value
I Il E 7 ~— internal nodes (value not used with internal nodes)
Using preorder traversal to encode a trie as a bitstream
34
Huffman coding demo
char freq encoding
« Count frequency for each character in input. A

input

ABRACADABRA!

- X O N W

Huffman coding demo Huffman coding demo

char freq encoding char freq encoding
« Count frequency for each character in input. A 5 » Start with one node corresponding to each character A 5
B 2 with weight equal to frequency. B 2
C 1 C 1
D 1 D 1
R 2 R 2
! 1 ! 1

input

ABRACADABRA!

FORD ORIV OUV ORI QR Ol

Huffman coding demo Huffman coding demo

char freq encoding char freq encoding
« Select two tries with min weight. A 5 » Select two tries with min weight. A 5

« Merge into single trie with cumulative weight. « Merge into single trie with cumulative weight.

B
C
D
R
!

BN R RN

B
C
D
R
1

BN R RN

ORIV ORIV ORIV ORI UV Ol RR

Huffman coding demo

Huffman coding demo

« Select two tries with min weight.

« Merge into single trie with cumulative weight.

char freq encoding

A 5
B 2
C 1 1
D 1
R 2
! 1 0

Huffman coding demo

« Select two tries with min weight.

« Merge into single trie with cumulative weight.

o 4 R o

char freq encoding

A 5
B 2
C 1 1
D 1
R 2
! 1 0

char freq encoding
» Select two tries with min weight. A 5
« Merge into single trie with cumulative weight. B 2
C 1 1
D 1
R 2
! 1 0
‘R
0 1
Huffman coding demo
char freq encoding
» Select two tries with min weight. A 5
« Merge into single trie with cumulative weight. B 2
C 1 1
D 1
R 2
! 1 0

Huffman coding demo

Huffman coding demo

char freq encoding
« Select two tries with min weight. A 5

« Merge into single trie with cumulative weight.

B
C
D
R
1

BN R RN

10

char freq encoding
» Select two tries with min weight. A 5

« Merge into single trie with cumulative weight.

B
C
D
R
!

BN R RN

10

Huffman coding demo

Huffman coding demo

char freq encoding

« Select two tries with min weight. A 5

« Merge into single trie with cumulative weight. B 2
C 1 11
D 1 0
R 2
! 1 10

ORI} SO GRII O

char freq encoding
» Select two tries with min weight. A 5

« Merge into single trie with cumulative weight.

B
C
D
R
!

BN R RN

10

Huffman coding demo

Huffman coding demo

char freq encoding
« Select two tries with min weight. A 5
« Merge into single trie with cumulative weight. B 2 1
C 1 11
D 1 0
R 2 0
! 1 10
‘8
0 1
SO0}
Huffman coding demo
char freq encoding
« Select two tries with min weight. A 5
« Merge into single trie with cumulative weight. B 2 1
C 1 11
D 1 0
R 2 0
! 1 10

char freq encoding
» Select two tries with min weight. A 5
« Merge into single trie with cumulative weight. B 2 1
C 1 11
D 1 0
R 2 0
! 1 10
‘8
0
Huffman coding demo
char freq encoding
» Select two tries with min weight. A 5
« Merge into single trie with cumulative weight. B 2 11
C 1 011
D 1 00
R 2 10
! 1 010

2N
o
o K
JORC!

3
0

Jof

Huffman coding demo

Huffman coding demo

« Select two tries with min weight.
« Merge into single trie with cumulative weight.

e

1

0

JORNBC}

o N A

char
A

B
C
D
R
1

freq encoding

» Select two tries with min weight.
« Merge into single trie with cumulative weight.

20

0

go! JOR Gl

o N A

char
A

B
C
D
R
!

freq encoding
5

2 11
1 011
1 00
2 10
1 010

Huffman coding demo

Huffman coding demo

« Select two tries with min weight.
« Merge into single trie with cumulative weight.

T
ol

R
o ®

char
A

B
C
D
R
1

freq encoding

char

A

- X O N W

freq encoding
5 0

111
1011
100
110
1010

BN R RN

Constructing a Huffman encoding trie: Java implementation

private static Node buildTrie(int[] freq)

Practice

Construct the Huffman code for the following strings:

aababcabcdabcde

abcdabcdabcdabcdabcdabcdabcdabcdabecdabedabed

{
MinPQ<Node> pq = new MinPQ<Node>();
for (char i = 0; i < R; i++) initialize PQ with
if (freq[il > 0) singleton tries
pqg.insert(new Node(i, freq[il, null, null));
i i merge two
while (pg.size() > 1) < smallest tries
Node x = pqg.delMinQ);
Node y = pq.delMin();
Node parent = new Node('\0', x.freq + y.freq, x, y);
pqg.insert(parent);
return pq.delMin(Q); not used for total frequency two subtries
} internal nodes
57
Practice

Construct the Huffman code for the following strings:

aababcabcdabcde

a 11
b 10
c 01
d 001
e 000

abcdabcdabcdabcdabcdabcdabcdabecdabedabedabed

a 00
b 01

c 10 "\

d 11

Each codeword uses 2 bits, so no compression (or expansion) of input.
Small overhead due to need to store trie.

Huffman coding: overview

Compression: high-level steps:

« Build prefix-free code for message:
— Tabulate character frequencies.
— Recursively merge two min weight tries.

» Write prefix-free code (as a trie).

« Compress message using prefix-free code:
— Build symbol table from characters to codewords.
— Output codeword for each character in input.

Expansion: high-level steps:
« Read and decode prefix-free code (as a trie) from file.
« Expand compressed message using trie:

- Repeatedly find path from root to leaf in trie using bit sequence.

Huffman compression summary

Proposition. Huffman's algorithm produces an optimal prefix-free code.
Pf. See textbook.

no prefix-free code
uses fewer bits

Two-pass implementation (for compression).
« Pass 1: tabulate character frequencies; build trie.
« Pass 2: encode file by traversing trie (or symbol table).

Running time (for compression). Using a binary heap = N+RlogR.

Running time (for expansion). Using a binary trie = N.

input alphabet
size size

Q. Can we do better? [stay tuned]

Lossy vs. lossless compression

This lecture: lossless compression

Images, music, videos, ... :
lossy compression dramatically more effective

5.5 DATA COMPRESSION

Algorithms

» LZW compression

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Abraham Lempel Jacob Ziv

Statistical methods

Static model. Same model for all texts.
» Fast.
. Not optimal: different texts have different statistical properties.
* Ex: ASCIl, Morse code.

Dynamic model. Generate model based on text.
« Preliminary pass needed to generate model.
« Must transmit the model.

» Ex: Huffman code.

Adaptive model. Progressively learn and update model as you read text.
« More accurate modeling produces better compression.
» Decoding must start from beginning.
o Ex: LZW.

LZW compression demo

input
matches

vawe 41 42 52 41 43 41 44 81 83 82 88

LZW compression for ABRACADABRABRABRA

: H AB 81 DA 87

A 41 BR 82 ABR 88

B 42 RA 83 RAB 89

C 43 AC 84 BRA 8A

D 44 CA 85 ABRA 8B
AD 86

codeword table
stop char: 80

41 80

Lempel-Ziv-Welch compression

LZW compression.
» Create ST mapping string keys to W-bit codewords.
« Initialize ST with codewords for single-character keys.
* Find longest string s in ST that is a prefix of unscanned part of input.
* Write the W-bit codeword associated with s.
* Add s +c to ST, where c is next character in the input.

longest prefix match

Q. How to represent LZW compression code table?
A. A trie to support longest prefix match.

LZW expansion demo

valve 41 42 52 41 43 41 44 81 83 82 88 41 80

ouput A B R A cC A D AB RA BR ABR A

LZW expansion for 41 42 52 41 43 41 44 81 83 82 88 41 80

: H 81 AB 87 DA

41 A 82 BR 88 ABR

42 B 83 RA 89 RAB

43 c 84 AC 8A BRA

44 D 85 CA 8B ABRA
86 AD

codeword table

LZW expansion
LZW expansion. key value
« Create ST mapping W-bit keys to string values. ; :
« Initialize ST to contain single-character values. 65 A
66 B
* Read a W-bit key. o c
» Find associated string value in ST and write it out. @ R
« Update ST. :
129 AB
Q. How to represent LZW expansion code table? 130 BR
131 RA
A. An array of length 27.
132 AC
133 CA
134 AD
135 DA
136 ABR
137 RAB
138 BRA

139 ABRA

Data compression: quiz 4

What is the LZW compression of ABABABA ?

41 42 41 42 41 42 80
41 42 41 81 81
41 42 81 81 41
41 42 81 83 80

m o n ® >

I don't know.

LZW tricky case: compression

input

matches

vae 41 42 81 83 80

LZW compression for ABABABA

: H AB 81

A 41 BA 82
B 42 ABA 83
C 43
D 44

codeword table

LZW tricky case: expansion

e 41 42 81 83 80

d to know code for 83
A B AB ABA «—8 "
output before it is in codeword table!

LZW expansion for 41 42 81 83 80 \ we can deduce that

the code for 83 is ABx
for some character x

key key now, we have deduced x!

81 AB
41 A 82 BA
42 B 83 ABA
43 C
44 D

codeword table

LZW implementation details

How big to make ST?
« How long is message?
« Whole message similar model?

* [many other variations]

What to do when ST fills up?
o Throw away and start over. [CIF]
« Throw away when not effective. [Unix compress]
* [many other variations]

Why not put longer substrings in ST?
« [many variations have been developed]

LZW in the real world

Lempel-Ziv and friends.
o LZ77.
. LZ78.
o LZW.
« Deflate / zlib = LZ77 variant + Huffman.

Unix compress, GIF, TIFF, V.42bis modem: LZW.<«——— previously under patent
zip, 7zip, gzip, jar, png, pdf: deflate / zlib.
iPhone, Wii, Apache HTTP server: deflate / zlib.

<«——— not patented
(widely used in open source)

—
ﬂ A: ache

5 == E— - HTTP SERVER PROJECT

T A

Lossless data compression benchmarks

1967 AsCII 7
1950 Huffman 4.7
1977 L1277 3.94
1984 LZMW 3.32
1987 LzZH 3.3
1987 move-to-front 3.24
1987 LzB 3.18
1987 gzip 2.71
1988 PPMC 2.48
1994 SAKDC 2.47
1994 PPM 234
1997 BOA 1.99
1999 RK 1.89

data compression using Calgary corpus

Data compression summary

Lossless compression.
« Represent fixed-length symbols with variable-length codes. [Huffman]
« Represent variable-length symbols with fixed-length codes. [LZW]

Lossy compression. [not covered in this course]
« JPEG, MPEG, MP3, ...

N-1 P 1
« FFT/DCT, wavelets, fractals, ... X = ,,Z_O'r" o8 [T ("+ 5) ‘}
Theoretical limits on compression. Shannon entropy: H(X) = — Y p(x:)lgp(x:)

i

Practical compression. Exploit extra knowledge whenever possible.

Itiwpiiss

