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5.3  SUBSTRING SEARCH

‣ introduction 
‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore 

‣ Rabin–Karp

Do any of the algorithms we’ve studied so far have a running time that’s a 

decreasing function of the input size? 

A.  Yes

B.  No 

C.  Haha no way

D.  I don't know.

Substring search quiz 0

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 
‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore 

‣ Rabin–Karp

5.3  SUBSTRING SEARCH
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Substring search

Goal.  Find pattern of length M in a text of length N.

typically N >> M

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text
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Substring search applications

Goal.  Find pattern of length M in a text of length N.

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text

typically N >> M
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Substring search applications

Goal.  Find pattern of length M in a text of length N. 

Computer forensics.  Search memory or disk for signatures,  
e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text

typically N >> M
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Substring search applications

Electronic surveillance.
Need to monitor all 

internet traffic. 
(security)

No way! 
(privacy)

Well, we’re mainly 
interested in 

“ATTACK AT DAWN”

OK. Build a 
machine that just 

looks for that.

“ATTACK AT DAWN”
substring search 

machine

found

Latest censored keywords in China

8

female infant + vaccine + die 
Hebei + female infant + vaccine 

Panama 
Banama (Panama) 

banama (Panama) 
[Panama] Canal Papers 

[Pa]nama Papers 
launder money + brother-in-law 

Xi + brother-in-law 
top Chinese official + offshore 

Wen [Jiabao] clan 
Xi + explode 

Wanda + bigwig 
Leshi + [Jia] Yueting 

50 cents + internet commentary

From http://chinadigitaltimes.net/2013/06/grass-mud-horse-list/

Drop packet if any
keyword found
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5.3  SUBSTRING SEARCH

Check for pattern starting at each text position.

10

Brute-force substring search

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match

Suppose you want to count the number of all occurrences of some pattern 

string of length M in a text of length N. What is the order of growth of the 

best-case and worst-case running time of the brute-force algorithm? 

Assume M ≤ N. 

A.  N and M N

B.  N and M N 2

C.  MN and M N

D.  MN and M N 2

E.  I don't know.

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match
Brute-force substring search (worst case)

 i   j  i+j   0  1  2  3  4  5  6  7  8  9

              A  A  A  A  A  A  A  A  A  B 

 0   4   4    A  A  A  A  B 
 1   4   5       A  A  A  A  B 
 2   4   6          A  A  A  A  B 
 3   4   7             A  A  A  A  B 
 4   4   8                A  A  A  A  B 
 5   5  10                   A  A  A  A  B

   

txt

pat

Substring search quiz 1

In many applications, we want to avoid backup in text stream. 

・Treat input as stream of data. 

・Abstract model:  standard input. 

 
 
Brute-force algorithm needs backup for every mismatch. 

 
 
 
 
 
 
 
 
Approach 1.  Maintain buffer of last M characters. 

Approach 2.  Streaming algorithm.

Backup
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“ATTACK AT DAWN”
substring search machine

A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  B  

                    A  A  A  A  A  B

A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  B  

                  A  A  A  A  A  B

matched chars
mismatch

shift pattern right one position

backup 

found
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Knuth–Morris–Pratt substring search

Intuition.    Suppose we are searching in text for pattern  BAAAAAAAAA. 

・Suppose we match 5 chars in pattern, with mismatch on 6th char. 

・We know previous 6 chars in text are BAAAAB. 

・Don't need to back up text pointer! 

 
 
 
 
 
 
 
 
 
 
 
Knuth–Morris–Pratt algorithm.   Clever method to always avoid backup!
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Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

assuming { A, B } alphabet

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Searching for BAAAAAAAAA

Let j = #characters matched so far. 

 
When j = 0: 

・If we see ‘A’:  j remains 0 

・If we see ‘B’:  j becomes 1 

When 1 <= j < 10: 

・If we see ‘A’:  j = j + 1 

・If we see ‘B’:  j = 1 

j = 10: match!
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B A A A A A A A A A

j 0 1 2 3 4 5 6 7 8 9

A 0 2 3 4 5 6 7 8 9 10

B 1 1 1 1 1 1 1 1 1 1

Properties of state transition matrix: 

・Depends only on pattern, not text 

・#rows = alphabet size 

・#columns = length of pattern 

・In each col, exactly one row lets us 

increment the state j 

Exercise

Construct the state transition matrix for the pattern ABABAC. 

e.g., j = 3: we’ve matched the string ‘ABA’ in the text (XXXXXXABA) 

・If we see ‘A’: we’ve matched ‘A’ (XXXXXXABAA) ⇒ j becomes 1 

・If we see ‘B’: we’ve matched ‘ABAB’ (XXXXXXABAB) ⇒ j becomes 4 

・If we see ‘C’: we’ve matched nothing (XXXXXXABAC) ⇒ j becomes 0

16

B A A A A A A A A A

j 0 1 2 3 4 5 6 7 8 9

A 0 2 3 4 5 6 7 8 9 10

B 1 1 1 1 1 1 1 1 1 1

A B A B A C

j 0 1 2 3 4 5

A 1

B 4

C 0

old:



Exercise

Construct the state transition matrix for the pattern ABABAC. 

e.g., j = 3: we’ve matched the string ‘ABA’ in the text (XXXXXXABA) 

・If we see ‘A’: we’ve matched ‘A’ (XXXXXXABAA) ⇒ j becomes 1 

・If we see ‘B’: we’ve matched ‘ABAB’ (XXXXXXABAB) ⇒ j becomes 4 

・If we see ‘C’: we’ve matched nothing (XXXXXXABAC) ⇒ j becomes 0

17

B A A A A A A A A A

j 0 1 2 3 4 5 6 7 8 9

A 0 2 3 4 5 6 7 8 9 10

B 1 1 1 1 1 1 1 1 1 1

A B A B A C

j 0 1 2 3 4 5

A 1 1 3 1 5 1

B 0 2 0 4 0 4

C 0 0 0 0 0 6

old:

DFA is abstract string-searching machine. 

・Finite number of states (including start and halt). 

・Exactly one state transition for each char in alphabet. 

・Accept if sequence of state transitions leads to halt state.

Deterministic finite state automaton (DFA)

18

graphical representation

Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

internal representation

If in state j reading char c: 
      if j is 6 halt and accept 

else move to state dfa[c][j]

10 32 4 65B

A

C

BA A CA

B

A

B, C

B, C

B, C

A

C

Knuth–Morris–Pratt demo:  DFA simulation
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1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

A  A  B  A  C  A  A  B  A  B  A  C  A  A

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

Knuth–Morris–Pratt demo:  DFA simulation
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1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

A  A  B  A  C  A  A  B  A  B  A  C  A  A

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]



10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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1 32 4 65BA BA CA

B

A

A

C
B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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1 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]



10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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3 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation

26

4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

1 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A  A  B  A  C  A  A  B  A  B  A  C  A  A

0

A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

1 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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4 65A BA CA

B

A

A

B, C

B, C

B, C

C

A  A  B  A  C  A  A  B  A  B  A  C  A  A

0

A

B
C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]
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Knuth–Morris–Pratt demo:  DFA simulation
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32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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3 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]



10 32 4 65

Knuth–Morris–Pratt demo:  DFA simulation
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6BA BA CA

B

A

A

B, C

B, C

B, C

C

A

A  A  B  A  C  A  A  B  A  B  A  C  A  A

C

substring found

1 1 3 1 5 1
0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A
B

C

pat.charAt(j)

dfa[][j]

Q.  What is interpretation of DFA state after reading in txt[i]? 

A.  State = number of characters in pattern that have been matched. 

 
 
Ex.  DFA is in state 3 after reading in txt[0..6].

Interpretation of Knuth–Morris–Pratt DFA

34

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

0  1  2  3  4  5  6  7  8  

B  C  B  A  A  B  A  C  Atxt
0  1  2  3  4  5  

A  B  A  B  A  Cpat

i

suffix of txt[0..6] prefix of pat[]

length of longest prefix of pat[] 
that is a suffix of txt[0..i]

Which state is the DFA in after processing the following input? 
 

A.  0

B.  1

C.  3

D.  4

E.  I don't know.

Substring search quiz 2

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

A A B B A B A B C A B A A B A A C A A A B A B A B A A C A A B A A B A B A B

Knuth–Morris–Pratt substring search:  Java implementation

Key differences from brute-force implementation. 

・Need to precompute dfa[][] from pattern. 

・Text pointer i never decrements. 

 
 
 
 
 
 
 
 
 
 

36

public int search(String txt) 
{ 
   int i, j, N = txt.length();  
   for (i = 0, j = 0; i < N && j < M; i++)  

      j = dfa[txt.charAt(i)][j];  
   if (j == M) return i - M;  
   else        return N;  

}

no backup



Key differences from brute-force implementation. 

・Need to precompute dfa[][] from pattern. 

・Text pointer i never decrements. 

・Could use input stream.

Knuth–Morris–Pratt substring search:  Java implementation

37

public int search(In in) 
{ 
   int i, j;  
   for (i = 0, j = 0; !in.isEmpty() && j < M; i++)  

      j = dfa[in.readChar()][j];  
   if (j == M) return i - M;  
   else        return NOT_FOUND;  
}

Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

no backup

Knuth-Morris-Pratt Running time

Running time. 

・Simulate DFA on text:  at most N character accesses. 

・Build DFA:  how to do efficiently? See textbook/video. 

– In the vast majority of applications, the running time of building the 

DFA is irrelevant. [Arvind’s opinion.]

38

 “  Programmers waste enormous amounts of time thinking about, 
     or worrying about, the speed of noncritical parts of their programs, 
     and these attempts at efficiency actually have a strong negative 
     impact when debugging and maintenance are considered. 

     We should forget about small efficiencies, say about 97% of the time:  
      premature optimization is the root of all evil. 

Proposition.  KMP substring search accesses no more than M + N chars  
to search for a pattern of length M in a text of length N. 

  
Pf.  Each pattern character accessed once when constructing the DFA; each 

text character accessed once (in the worst case) when simulating the DFA. 

 
 
Proposition.  KMP constructs dfa[][] in time and space proportional to R M. 

 
Larger alphabets.  Improved version of KMP constructs nfa[] in time and 

space proportional to M.

39

KMP substring search analysis

NFA corresponding to the string A  B  A  B  A  C 

0 1 2 3 4 5 6A B A A C

     0   1   2   3   4   5
     A   B   A   B   A   C
     0   0   0   0   0   3
       

next[j]
pat.charAt(j)

j

graphical representation

internal representation

mismatch transition
(back up at least one state)

B

KMP NFA for ABABAC

40

Knuth–Morris–Pratt:  brief history

・Independently discovered by two theoreticians and a hacker. 

– Knuth:  inspired by esoteric theorem, discovered linear algorithm 

– Pratt:  made running time independent of alphabet size 

– Morris:  built a text editor for the CDC 6400 computer 

・Theory meets practice.

Don Knuth Vaughan PrattJim Morris

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHf, JAMES H. MORRIS, JR.:l: AND VAUGHAN R. PRATT

Abstract. An algorithm is presented which finds all occurrences of one. given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {can}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.
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Text-editing programs are often required to search through a string of
characters looking for instances of a given "pattern" string; we wish to find all
positions, or perhaps only the leftmost position, in which the pattern occurs as a
contiguous substring of the text. For example, c a e n a r y contains the pattern
e n, but we do not regard c a n a r y as a substring.

The obvious way to search for a matching pattern is to try searching at every
starting position of the text, abandoning the search as soon as an incorrect
character is found. But this approach can be very inefficient, for example when we
are looking for an occurrence of aaaaaaab in aaaaaaaaaaaaaab.
When the pattern is a"b and the text is a2"b, we will find ourselves making (n + 1)
comparisons of characters. Furthermore, the traditional approach involves
"backing up" the input text as we go through it, and this can add annoying
complications when we consider the buffering operations that are frequently
involved.

In this paper we describe a pattern-matching algorithm which finds all
occurrences of a pattern of length rn within a text of length n in O(rn + n) units of
time, without "backing up" the input text. The algorithm needs only O(m)
locations of internal memory if the text is read from an external file, and only
O(log m) units of time elapse between consecutive single-character inputs. All of
the constants of proportionality implied by these "O" formulas are independent
of the alphabet size.
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CYCLIC ROTATION

A string s is a cyclic rotation of t if s and t have the same length and  
s is a suffix of t followed by a prefix of t. 
 
 
 
 
Problem.  Given two binary strings s and t, design a linear-time algorithm  
to determine if s is a cyclic rotation of t.

R O T A T E D S T R I N G  

S T R I N G R O T A T E D

yes

A B A B A B B A B B A B A  

B A B B A B B A B A A B A

yes

R O T A T E D S T R I N G  

G N I R T S D E T A T O R

no
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5.3  SUBSTRING SEARCH

Robert Boyer J. Strother Moore

Intuition. 

・Scan characters in pattern from right to left. 

・Can skip as many as M text chars when finding one not in the pattern.

Boyer–Moore:  mismatched character heuristic
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Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text
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 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text

align N in text with
N in pattern

align N in text with
N in pattern

no S in pattern

Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 1.  Mismatch character not in pattern.
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.  .  .  .  .  .  T  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E

txt

pat

i

before

mismatch character 'T' not in pattern:  increment i one character beyond 'T'

.  .  .  .  .  .  T  L  E  .  .  .  .  .  .  

              N  E  E  D  L  E
txt

pat

i

after



Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 2a.  Mismatch character in pattern.
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.  .  .  .  .  .  N  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E

txt

pat

i

before

mismatch character 'N' in pattern:  align text 'N' with rightmost (why?) pattern 'N'

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .  

            N  E  E  D  L  E
txt

pat

i

after

Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 2b.  Mismatch character in pattern (but heuristic no help).

46

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E

txt

pat

before

i

mismatch character 'E' in pattern:  align text 'E' with rightmost pattern 'E' ?

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

  N  E  E  D  L  E
txt

pat

aligned with rightmost E?

i

Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 2b.  Mismatch character in pattern (but heuristic no help).
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.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E

txt

pat

mismatch character 'E' in pattern:  increment i by 1

i

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

        N  E  E  D  L  E
txt

pat

i

before

after

Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

A.  Precompute index of rightmost occurrence of character c in pattern. 

     (-1 if character not in pattern)
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Boyer-Moore skip table computation

c right[c]

          N   E   E   D   L   E
          0   1   2   3   4   5
A    -1  -1  -1  -1  -1  -1  -1     -1
B    -1  -1  -1  -1  -1  -1  -1     -1
C    -1  -1  -1  -1  -1  -1  -1     -1
D    -1  -1  -1  -1   3   3   3      3
E    -1  -1   1   2   2   2   5      5
...                                 -1
L    -1  -1  -1  -1  -1   4   4      4
M    -1  -1  -1  -1  -1  -1  -1     -1
N    -1   0   0   0   0   0   0      0
...                                 -1



Property.  Substring search with the Boyer–Moore mismatched character 

heuristic takes about ~ N / M character compares to search for a pattern of 

length M in a text of length N. 

 
Worst-case.  Can be as bad as  ~ M N. 
Q. What’s the worst-case input? 

 
 
 
 
 
 
 
 
Boyer–Moore variant.  Can improve worst case to ~ 3 N character compares 

by adding a KMP-like rule to guard against repetitive patterns.

Boyer–Moore:  analysis
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the longer the pattern, the faster to search!

Boyer-Moore-Horspool substring search (worst case)

 i skip     0  1  2  3  4  5  6  7  8  9

            B  B  B  B  B  B  B  B  B  B 

 0   0      A  B  B  B  B   
 1   1         A  B  B  B  B 
 2   1            A  B  B  B  B 
 3   1               A  B  B  B  B 
 4   1                  A  B  B  B  B 
 5   1                     A  B  B  B  B

   

txt

pat
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5.3  SUBSTRING SEARCH

Michael Rabin
Dick Karp

Simplified example

Assume 10-character alphabet: abcdefghij 

 
Text: beachheadacidifiedjadedheadbeheadeadbeef 
Pattern: beheaded 

 
“Hash” of string: number obtained replacing each char by corresponding digit 

 
 
 
 
 
 
h0 = 14727740 

Compute h0, h0, h2…. Match if h = h0. 
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b e a c h h e a d a c i d i f i e d j a

1 4 7 2 7 7 4 0 3 0 2 8 3 8 5 8 4 3 9 0

1 4 7 4 0 3 4 3

b e h e a d e d

Precompute hash of pattern: h = 14740343

Simplified example

Assume 10-character alphabet: abcdefghij 

 
Text: beachheadacidifiedjadedheadbeheadeadbeef 
Pattern: beheaded 

 
“Hash” of string: number obtained replacing each char by corresponding digit 

 
 
 
 
 
 
h0 = 14727740 

h1 = 47277403 
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b e a c h h e a d a c i d i f i e d j a

1 4 7 2 7 7 4 0 3 0 2 8 3 8 5 8 4 3 9 0

1 4 7 4 0 3 4 3

b e h e a d e d

Precompute hash of pattern: h = 14740343



Simplified example

Assume 10-character alphabet: abcdefghij 

 
Text: beachheadacidifiedjadedheadbeheadeadbeef 
Pattern: beheaded 

 
“Hash” of string: number obtained replacing each char by corresponding digit 

 
 
 
 
 
 
h1 = 47277403 

h2 = 72774030 

Q. Express hi+1 in terms of hi, t[0..N] (digits corresponding to text) and M 

A. hi+1 = (hi - ti •10M-1) • 10 + ti+M 
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b e a c h h e a d a c i d i f i e d j a

1 4 7 2 7 7 4 0 3 0 2 8 3 8 5 8 4 3 9 0

1 4 7 4 0 3 4 3

b e h e a d e d

Precompute hash of pattern: h = 14740343

Basic idea of Rabin-Karp

・Compute a hash of pat[0..M). 

・For each i, compute a hash of txt[i..M+i). 

・If pattern hash = text substring hash, declare match. 

 
 
 
 
 
 
Problem 1: alphabet size R may not be 10 

Problem 2: integer overflow if M is too long (M >= 10 for 32-bit ints) 

 
Solution 1: use base R 

Solution 2: do modulo Q arithmetic, where Q is a prime
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b e a c h h e a d a c i d i f i e d j a

1 4 7 2 7 7 4 0 3 0 2 8 3 8 5 8 4 3 9 0

1 4 7 4 0 3 4 3

b e h e a d e d

Now it is an actual hash function — collisions exist.  

Hash equality does not guarantee substring equality.

Rabin–Karp fingerprint search

Modular hashing. 

・Compute a hash of pat[0..M). 

・For each i, compute a hash of txt[i..M+i). 

・If pattern hash = text substring hash, check for a match.
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Basis for Rabin-Karp substring search 

                    txt.charAt(i)
i    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

0    3  1  4  1  5  % 997 = 508

1       1  4  1  5  9  % 997 = 201

2          4  1  5  9  2  % 997 = 715

3             1  5  9  2  6  % 997 = 971

4                5  9  2  6  5  % 997 = 442

5                   9  2  6  5  3  % 997 = 929 

6                      2  6  5  3  5  % 997 = 613

     pat.charAt(i)
i    0  1  2  3  4

     2  6  5  3  5  % 997 = 613
                                              

 return i = 6

 match

modular hashing with R = 10 and hash(s) = s (mod 997)Basis for Rabin-Karp substring search 

                    txt.charAt(i)
i    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
     3  1  4  1  5  9  2  6  5  3  5  8  9  7  9  3

0    3  1  4  1  5  % 997 = 508

1       1  4  1  5  9  % 997 = 201

2          4  1  5  9  2  % 997 = 715

3             1  5  9  2  6  % 997 = 971

4                5  9  2  6  5  % 997 = 442

5                   9  2  6  5  3  % 997 = 929 

6                      2  6  5  3  5  % 997 = 613

     pat.charAt(i)
i    0  1  2  3  4

     2  6  5  3  5  % 997 = 613
                                              

 return i = 6

 match

Math trick.  To keep numbers small, take intermediate results modulo Q.  

Ex.  

Modular arithmetic
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(10000 + 535) * 1000 (mod 997)

=  (30 + 535) * 3 (mod 997)

=  1695 (mod 997)

=  698 (mod 997)

(a + b) mod Q  =  ((a mod Q) + (b mod Q))  mod Q 

(a * b) mod Q  =  ((a mod Q) * (b mod Q))  mod Q 

two useful modular arithmetic identities

10000 mod 997 = 30

1000 mod 997 = 3

For more depth 

take COS 340



Modular hash function.  Using the notation ti for txt.charAt(i), 
we wish to compute 

 
 
 
Intuition.  M-digit, base-R integer, modulo Q. 

 
Horner's method.  Linear-time method to evaluate degree-M polynomial.

Efficiently computing the hash function
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xi  =  ti RM–1 + ti+1 R M–2 + … + ti+M–1 R0  (mod Q)

// Compute hash for M-digit key 
private long hash(String key, int M) 
{ 
   long h = 0; 
   for (int j = 0; j < M; j++) 
      h = (h * R + key.charAt(j)) % Q; 
   return h; 
}

Computing the hash value for the pattern with Horner’s method

      pat.charAt()
 i   0  1  2  3  4
     2  6  5  3  5

 0   2  % 997 = 2

 1   2  6  % 997 = (2*10 + 6) % 997 = 26

 2   2  6  5  % 997 = (26*10 + 5) % 997 = 265

 3   2  6  5  3  % 997 = (265*10 + 3) % 997 = 659

 4   2  6  5  3  5  % 997 = (659*10 + 5) % 997 = 613

QR

26535 = 2*10000 + 6*1000 + 5*100 + 3*10 + 5

           = ((((2) *10 + 6) * 10 + 5) * 10 + 3) * 10 + 5

Compare to 

hash tables 

lecture

Challenge.  How to efficiently compute xi+1 given that we know xi. 

 
 
 
Key property.   Can update "rolling" hash function in constant time!

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i   ...  2  3  4  5  6  7  ...
       1  4  1  5  9  2  6  5
          4  1  5  9  2  6  5
          
          4  1  5  9  2
       -  4  0  0  0  0
             1  5  9  2
                *  1  0
          1  5  9  2  0
                   +  6
          1  5  9  2  6
 

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value
new value

 text

Efficiently computing the hash function
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xi    =  ti R M–1 + ti+1 R M–2 + … + ti+M–1 R0

xi+1 =  ti+1 R M–1 + ti+2 R M–2 + … + ti+M R0

xi+1   =   ( xi    –    t i R M–1 )   R      +   t i + M

current 
value

subtract 
leading digit

add new 
trailing digit

multiply 
by radix

(can precompute RM-1)

Key computation in Rabin-Karp substring search
(move right one position in the text)

 i   ...  2  3  4  5  6  7  ...
       1  4  1  5  9  2  6  5
          4  1  5  9  2  6  5
          
          4  1  5  9  2
       -  4  0  0  0  0
             1  5  9  2
                *  1  0
          1  5  9  2  0
                   +  6
          1  5  9  2  6
 

current value

subtract leading digit

multiply by radix

add new trailing digit

new value

current value
new value

 text

Rabin–Karp:  Java implementation
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public class RabinKarp 
{ 
   private long patHash;    // pattern hash value  
   private int M;           // pattern length 
   private long Q;          // modulus 
   private int R;           // radix  
   private long RM1;        // R^(M-1) % Q       

   public RabinKarp(String pat) {  
      M = pat.length(); 
      R = 256; 
      Q = longRandomPrime(); 

      RM1 = 1;  
      for (int i = 1; i <= M-1; i++) 
         RM1 = (R * RM1) % Q; 
      patHash = hash(pat, M);  
   }  

   private long hash(String key, int M) 
   {  /* as before */  } 

   public int search(String txt) 
   {  /* see next slide */  } 
}

precompute RM – 1 (mod Q)

a large prime 
(but avoid overflow)

Rabin–Karp:  Java implementation (continued)

Monte Carlo version.  Return match if hash match. 

 
 
 
 
 
 
 
 
 
 
 
 
Las Vegas version.  Modify code to check for substring match if hash 

match; continue search if false collision.
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   public int search(String txt) 
   { 
       int N = txt.length();  
       int txtHash = hash(txt, M);  
       if (patHash == txtHash) return 0; 
       for (int i = M; i < N; i++) 
       { 
           txtHash = (txtHash + Q - RM*txt.charAt(i-M) % Q) % Q;  
           txtHash = (txtHash*R + txt.charAt(i)) % Q;  
           if (patHash == txtHash) return i - M + 1; 
       }  
       return N;  
   }

check for hash collision 
using rolling hash function



Rabin–Karp analysis

Theory.   If Q is a sufficiently large random prime (about M N 2), 
then the probability of a false collision is about 1 / N. 

 
Practice.  Choose Q to be a large prime (but not so large to cause overflow). 
Under reasonable assumptions, probability of a collision is about 1 / Q. 

 
Monte Carlo version. 

・Always runs in linear time. 

・Extremely likely to return correct answer (but not always!). 

 
Las Vegas version. 

・Always returns correct answer. 

・Extremely likely to run in linear time (but worst case is M N).
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Rabin–Karp fingerprint search

Advantages. 

・Extends to two-dimensional patterns. 

・Extends to finding multiple patterns. 

 
Disadvantages. 

・Arithmetic ops slower than char compares. 

・Las Vegas version requires backup. 

・Poor worst-case guarantee. 

 
 
Q.  How would you extend Rabin–Karp to efficiently search for any one  
      of P possible patterns in a text of length N ?
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Cost of searching for an M-character pattern in an N-character text.
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Substring search cost summary

Rabin-Karp substring search is known as a fingerprint search because it uses a small 
amount of information to represent a (potentially very large) pattern. Then it looks 
for this fingerprint (the hash value) in the text. The algorithm is efficient because the 
fingerprints can be efficiently computed and compared. 

Summary The table at the bottom of the page summarizes the algorithms that we 
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy 
to implement and works well in typical cases (Java’s indexOf() method in String uses 
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in 
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional 
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a 
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup 

in input? correct? extra 
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA 
(Algorithm 5.6 ) 2 N 1.1 N no yes MR

mismatch 
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char 
heuristic only 

(Algorithm 5.7 )
M N N / M yes yes R

Rabin-Karp†
Monte Carlo 

(Algorithm 5.8 ) 7 N 7 N no yes † 1

Las Vegas 7 N  † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations
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Rabin-Karp substring search is known as a fingerprint search because it uses a small 
amount of information to represent a (potentially very large) pattern. Then it looks 
for this fingerprint (the hash value) in the text. The algorithm is efficient because the 
fingerprints can be efficiently computed and compared. 

Summary The table at the bottom of the page summarizes the algorithms that we 
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy 
to implement and works well in typical cases (Java’s indexOf() method in String uses 
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in 
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional 
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a 
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup 

in input? correct? extra 
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA 
(Algorithm 5.6 ) 2 N 1.1 N no yes MR

mismatch 
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char 
heuristic only 

(Algorithm 5.7 )
M N N / M yes yes R

Rabin-Karp†
Monte Carlo 

(Algorithm 5.8 ) 7 N 7 N no yes † 1

Las Vegas 7 N  † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations
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Which of today’s algorithms do you like the best? 

A.  Knuth-Morris-Pratt (finite automaton).

B.  Boyer-Moore (skip-ahead heuristic). 

C.  Rabin-Karp (rolling hash function).

D.  It’s all a blur.

Substring search quiz ∞


