A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

GEOMETRIC APPLICATIONS OF BSTs

» 1d range search

» line segment intersection
» kd trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Overview

This lecture. Intersections among geometric objects.

;_ifll |||li_|— ||I;

2d orthogonal range search

line segment intersection

Applications. CAD, games, movies, virtual reality, databases, GIS,

Efficient solutions. Binary search trees (and extensions).

Overview

For more depth:
« COS 451 (computational geometry)
« COS 426 (computer graphics)

o o Computer Science 451
. « -
(oerp e Computational Geometry
(SVE RUFINEF)
Princeton University Bernard Chazelle
Computer Science
Department

.‘\\ _ \ 2
O S\

>
/A
%
>
©

79 78\
lbe /)

7%
LA
/s
/.\('
78
"z(o
7)\

medical imaging Voronoi tessellation fluid flow

GEOMETRIC APPLICATIONS OF BSTS

» 1d range search

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1d range search

Extension of ordered symbol table.

e Insert key-value pair.

Search for key «.
Delete key k.

Application. Database queries.

Geometric interpretation.
« Keys are point on a line.

« Find/count points in a given 1d interval.

——————————————————

Range search: find all keys between k; and ..

Range count: number of keys between k; and .

insert B
insert D
insert A
insert |
insert H
insert F
insert P
search G to K

count G to K

N T > > P> > P> W W

H W W W W W O

DI
DHI
DFHI
DFHIP

Quiz 1

Suppose that the keys are stored in a sorted array. What is the order of

growth of the running time to perform range count as a function of Nand R?

mo N ® p

log R
log N
logN + R

N+ R

I don't know.

/

N = number of keys
R = number of matching keys

Quiz 2

Suppose that the keys are stored in a sorted array. What is the order of

growth of the running time to perform range search as a function of N and R?

mo N ® p

log R
log N
logN + R

N+ R

I don't know.

/

N = number of keys
R = number of matching keys

1d range search: elementary implementations

Ordered array. Slow insert; fast range search.
Unordered list. Slow insert; slow range search.

order of growth of running time for 1d range search

data structure insert range count range search

ordered array log N R +log N
unordered list N N N
goal log N log N R +1log N

N = number of keys

R = number of keys that match

1d range count: BST implementation

1d range count. How many keys between 1o and hi ?

rangeCount(E, S)
- rank(S) = 6
- rank(E) = 2
- 5 keys between E and S

public int size(Key 1o, Key hi)

{
if (contains(hi)) return rank(Chi) - rank(lo) + 1;
else return rank(hi) - rank(lo);

} N number of keys < hi

Proposition. Running time proportional to log N. «— assuming BST is balanced
Pf. Nodes examined = search path to 1o + search path to hi.

1d range search: BST implementation

1d range search. Find all keys between 10 and hi.

« Recursively find all keys in left subtree (if any could fall in range).
e Check key in current node.

« Recursively find all keys in right subtree (if any could fall in range).

range search [F...Q]

v =ZrITO

Pf. Nodes examined = search path to 1o + search path to hi + matches.

10

1d range search: summary of performance

Ordered array. Slow insert; fast range search.
Unordered list. Slow insert; slow range search.
BST. Fast insert; fast range search.

order of growth of running time for 1d range search

data structure insert range count range search

ordered array log N R+1log N

unordered list N N N

goal log N R +log N

N = number of keys

R = number of keys that match

11

INTERVAL STABBING QUERY

Goal. Insert intervals (1eft, right) and support queries of the form

"how many intervals contain x ?"

public class IntervalStab

IntervalStab() create an empty data structure

void 1dinsert(double left, double right)

insert the interval (left, right)
into the data structure

number of intervals

int count(double x) Tt contain x
3
— (3, 6) o o (7, 10) —eo o— (16, 20) —e
o (5,9 —e o— (14,17) —o
—— (4,8) 44— — (12,15 —e

12

GEOMETRIC APPLICATIONS OF BSTS

» line segment intersection

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Orthogonal line segment intersection

Given N horizontal and vertical line segments, find all intersections.

] — — — |
. "
>\I/

L
— - |_I‘|f|>
|'||| S

4

Quadratic algorithm. Check all pairs of line segments for intersection.

14

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.
e Very Large Scale Integration (VLSI).
« Computer-Aided Design (CAD).

Design-rule checking.
« Certain wires cannot intersect.
« Certain spacing needed between different types of wires.
« Debugging = line segment (or rectangle) intersection.

15

Algorithms and Moore's law

Moore’s law (1965). Transistor count doubles every 2 years.

Transistor count

2,600,000,000
1,000,000,000

100,000,000

10,000,000 -

1,000,000 -

100,000 -

10,000

2,300~

16-Core SPARC T3

Six-Core Caore i7
Six-Cors Xeon 7400 \ ®10-Cora Xeon Westmare-EX
Dual-Caore Itanium 2@ . EH?
AMD K1O o— U:'Id'CO'O z196
uad-Core ltanium Tukwila
powgns. . ~B8-Care Xeon Nehalem-EX
Hanium 2 with 8MB cache ® ", Six-Core Opteron 2400
AMD K10@ Core i7 (Quad)
ore 2 Duo
Itanium 2 @ :89"
® AMD K8
@®Barton
Pantium 4 @ ® Atom
AMD K7
@ 20D Ke-1il
curve shows transistor /AMD K
@ Pentiumn I
count doubling every Pansurn]
two years
@ AMD K5
® Pantium
BO4ES @
803860
80236 @
68000 @
©® BO1ES
80B6 @ @068
8085
69100 ‘e @680
8080 ®2Z80
Ny
BOOB® OMOS 6502
4004@ “ACA 1802
I 1 T T 1
1971 1980 1990 2000 2011

Gordon Moore

http://commons.wikimedia.org/wiki/File%3ATransistor_Count_and_Moore's_Law_-_2011.svg

16

Algorithms and Moore's law

Sustaining Moore's law.
e Problem size doubles every 2 years. <«—— problem size = transistor count
e Processing power doubles every 2 years. <«<—— get to use faster computer
« How much $ do | need to get the job done with a quadratic algorithm?

TN

Tonv = (a/2)(2N)? running time in 2 years
= 2Tn
1970 | 1972 | 1974 | 2000
N $x $x $ x $x

Nlog N $x $x $x $x

a N 2 running time today

N2 $x $2x $4x $215x

Bottom line. Linearithmic algorithm is necessary to sustain Moore’s Law.

17

Orthogonal line segment intersection: sweep-line algorithm

Nondegeneracy assumption. All x- and y-coordinates are distinct.

®
L —
3 @ ®
4 ¢
® ®
®
2 o—m——o
® ®
] @ °®
*r—e
®
0O e ?o

18

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
» x-coordinates define events.
« h-segment (left endpoint): insert y-coordinate into BST.

|
|
I
) I
—1—o :

3 @ ® ® 3
|
I
4 @ :
® .o |

2 o—m—9 ‘2
o N I

1 @ ° e |

| — I
|
|
|
|

0 @ ?o 90
|
|

nondegeneracy assumption: all x- and y-coordinates are distinct y-coordinates

19

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
e x-coordinates define events.
« h-segment (left endpoint): insert y-coordinate into BST.
« h-segment (right endpoint): remove y-coordinate from BST.

|
|
l
) I
—1—o :

3 @ ® ® 3
|
I
4 @ :
° .o |
2 o—m—9 :
o o I

1 ® ° o |

| — I
|
|
|
|

0 @ ?o 90
|
|

nondegeneracy assumption: all x- and y-coordinates are distinct y-coordinates

20

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
e x-coordinates define events.
« h-segment (left endpoint): insert y-coordinate into BST.
« h-segment (right endpoint): remove y-coordinate from BST.
e v-segment: range search for interval of y-endpoints.

1d range

/ search

nondegeneracy assumption: all x- and y-coordinates are distinct y-coordinates 21

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time proportional to Nlog N+ R

to find all R intersections among N orthogonal line segments.

Pf.
e Put x-coordinates on a PQ (or sort). <— NlogN
e Insert y-coordinates into BST. «— NlogN
e Delete y-coordinates from BST. <«— Nlog N
« Range searches in BST. <«— Nlog N+R

Bottom line. Sweep line reduces 2d orthogonal line segment intersection
search to 1d range search.

22

GEOMETRIC APPLICATIONS OF BSTS

» kd trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
e |Insert a 2d key.
e Search for a 2d key.

« Range search: find all keys that lie in a 2d range.

« Range count: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.
« Keys are point in the plane.
* Find/count points in a given i-v rectangle .

T

rectangle is axis-aligned

24

Data representation

How to represent a point?
« Cartesian co-ordinates: (x, y)
e Polar co-ordinates: (r, 6)

How to represent a line segment?
o A pair of points

How to represent a line?
e (x-intercept, y-intercept)
e (x-intercept, slope)
e (y-intercept, slope)
« (distance from origin, slope)

How to represent a rectangle?
e A pair of points
e (Xmin, ymin, xmax, ymax)

25

2d orthogonal range search: grid implementation

Grid implementation.

e Divide space into M-by-M grid of squares.

Create list of points contained in each square.

Use 2d array to directly index relevant square.

Insert: add (x, y) to list for corresponding square.

Range search: examine only squares that intersect 2d range query.

26

2d orthogonal range search: grid implementation analysis

Space-time tradeoff.
e Space: M2+ N.

e Time: 1 + N/M? per square examined, on average.

Choose grid square size to tune performance.
« Too small: wastes space.
« Too large: too many points per square.
e Rule of thumb: VN-by-VN grid.

Running time. [if points are evenly distributed]

e Initialize data structure: M.
e Insert point: 1. %ChOOSGM~JN .

« Range search: 1 per point in range.

27

Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
« Lists are too long, even though average length is short.
« Need data structure that adapts gracefully to data.

Y
o
° o’.:.
___|e®® 0@ |
o9 {

Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data. Ao
TP S 18
Q;:%. - ’ ol !" .
‘*;“v.:. boll ,: '. 3
13,000 points, 1000 grid squares
_______ ----II...IIIIIIIIIIIl
half the squares are empty half the points are

in 10% of the squares 59

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Grid Quadtree 2d tree

BSP tree

30

Space-partitioning trees: applications

Applications.
e Ray tracing.
e 2d range search.
e Flight simulators.
« N-body simulation.
« Collision detection.
« Astronomical databases.
e Nearest neighbor search.

« Adaptive mesh generation. s 0 1000) P F L]

e ———— M AR INE H EAC T JARTERS

e Accelerate rendering in Doom.
« Hidden surface removal and shadow casting.

Grid Quadtree 2d tree BSP tree

2d tree construction

Recursively partition plane into two halfplanes.

32

Quiz 3

Where would point 11 be inserted in the kd-tree below?

A. Right child of 6.
B. Left child of 7.
C. Left child of 10.
D. Right child of 10.
E. Idon't know.
4
: | '9

33

2d tree implementation

Data structure. BST, but alternate using x- and y-coordinates as key.
« Search gives rectangle containing point.
e Insert further subdivides the plane.

A
q
: : : o D 1 : . °
pomts pomts : . pomts pomts
left of p right of p L 3 below q aboveq o+
even levels odd levels

e

o ©®

w

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

35

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

36

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

search root node

-- : check if query rectangle contains point 1

37

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

1

query rectangle to left of splitting line

search only in left subtree

38

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

w

search left subtree

check if query rectangle contains point 3

39

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

query rectangle intersects splitting line

search bottom and top subtrees

40

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 search left subtree

check if query rectangle contains point 4

41

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

I 4 query rectangle to left of splitting line
search only in left subtree

42

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

I 4 search left subtree
check if query rectangle contains point 5

(search hit)
43

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 query rectangle intersects splitting line

search bottom and top subtrees

44

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 search bottom subtree

stop since empty

45

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 search top subtree

stop since empty

46

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 return from function call

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

I 4 5 return from function call

48

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 return from function call

49

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 search top subtree

check if query rectangle contains point 6

50

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 query rectangle to left of splitting line

search only in left subtree

51

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 search left subtree

stop since empty

52

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 return from function call

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 return from function call

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 return from function call

55

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 done

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.
e Check if point in node lies in given rectangle.
« Recursively search left/bottom (if any could fall in rectangle).
« Recursively search right/top (if any could fall in rectangle).

® 4 5 done

Range search in a 2d tree analysis

Typical case. R +log N.
Worst case (assuming tree is balanced). R+ VN.

w

58

2d tree demo: nearest neighbor

Goal

. Find closest point to query point.

6 @ *
: 9
i query point
: 3
| ‘j .
| 1 @

59

2d tree demo: nearest neighbor

Goal. Find closest point to query point.

. query point

2

3
L

60

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

search root node
compute distance from query point to 1

(update champion nearest neighbor)

61

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

query point is to the left of splitting line

search left subtree first

62

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

search left subtree

compute distance from query point to 3

(update champion)

63

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

query point is above splitting line

search top subtree first

64

2d tree demo: nearest neighbor

o 1

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

search top subtree

compute distance from query point to 6

65

2d tree demo: nearest neighbor

o 1

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

query point is to left of splitting line

search left subtree first

66

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

search left subtree

return since empty

67

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

search right subtree

prune since nearest neighbor

can't be here

68

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

return from function call

search bottom subtree next

69

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

search bottom subtree

compute distance from query point to 4

70

2d tree demo: nearest neighbor

o I

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

query point is to left of splitting line

search left subtree first

71

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).

Recursively search right/top (if it could contain a closer point).

Organize method so that it begins by searching for query point.

i 6
: o
-\ ;
o
5
I 4 search left subtree
compute distance from query point to 5

(update champion)
72

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

o 4 query point is above splitting line

search top subtree first

73

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

o 4 search top subtree

return since empty

74

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

o 4 search bottom subtree

return since empty

75

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

I 4 5 return from function call

search right subtree next

76

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

. . search right subtree

I 4 prune since nearest neighbor

can't be here
(drawing not quite to scale)

77

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

o 4 5 return from function call

78

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

o 4 5 return from function call

search right subtree next

79

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

0 4 search right subtree

prune since nearest neighbor

can't be here

80

2d tree demo: nearest neighbor

Check distance from point in node to query point.

Recursively search left/bottom (if it could contain a closer point).
Recursively search right/top (if it could contain a closer point).
Organize method so that it begins by searching for query point.

0 4 nearest neighbor = 5

81

Quiz 4

Which of the following is the worst case for nearest neighbor search?

) (.:.'.:.2
et e R D. [Idon't know.

82

Nearest neighbor search in a 2d tree analysis

Typical case. log N.
Worst case (even if tree is balanced). M.

w

nearest neighbor = 5

88

Kd tree

Kd tree. Recursively partition k&-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

e J

%

level =i (mod k) i . n ¢
points points ' ’ -
whose ith whose ijth LR K
coordinate coordinate \
is less than p’s is greater than p’s

Efficient, simple data structure for processing k-dimensional data.
e Widely used.
« Adapts well to high-dimensional and clustered data.

. /p
« Discovered by an undergrad in an algorithms class! ot Bl

84

Flocking birds

Q. What "natural algorithm" do starlings, migrating geese, starlings,

cranes, bait balls of fish, and flashing fireflies use to flock?

85

Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:

« Collision avoidance: point away from k nearest boids.
« Flock centering: point towards the center of mass of k nearest boids.
« Velocity matching: update velocity to the average of k nearest boids.

86

N-body simulation

Goal. Simulate the motion of N particles, mutually affected by gravity.

: : Gmim
Brute force. For each pair of particles, compute force: I = #

Running time. Time per step is N-.

87

Appel's algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
e Treat cluster of particles as a single aggregate particle.
« Compute force between particle and center of mass of aggregate.

88

Appel's algorithm for N-body simulation

e Build 3d-tree with N particles as nodes.

« Store center-of-mass of subtree in each node.

« To compute total force acting on a particle, traverse tree, but stop
as soon as distance from particle to subdivision is sufficiently large.

SIAM J. SCI. STAT. COMPUT. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, January 1985 008

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPEL*t

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N?) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N = 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

Impact. Running time per step is Nlog N = enables new research.

Geometric applications of BSTs

problem

1d range search

2d orthogonal line
segment intersection

2d range search
kd range search

example

solution

binary search tree

sweep line reduces problem
to 1d range search

2d tree
kd tree

90

