A 1 g() I 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs

» B-trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Symbol table review

guarantee average case
ordered

implementation -
: search _ Ops!
search insert delete hit insert delete

sequential search

(unordered list) N N N N N N

binary search log N N N log N N N v
(ordered array) 08 og

85T N N N log N log N VN v

goal (log N) (log N) log N log N log N log N v

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

key
interface

equals()

compareTo()

compareTo()

compareTo()

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

http://algs4.cs.princeton.edu

2-3 tree

Symmetric order. Inorder traversal yields keys in ascending order.

Perfect balance. Every path from root to null link has same length.

Allow 1 or 2 keys per node.
« 2-node: one key, two children.
« 3-node: two keys, three children.

between E and J null link

2-3 tree demo

Search.
« Compare search key against keys in node.
e Find interval containing search key.
« Follow associated link (recursively).

search for H

2-3 tree demo: insertion

Insert into a 2-node at bottom.
e Search for key, as usual.
« Replace 2-node with 3-node.

K is less than M
(go left)

< @

insert K

2-3 tree demo: insertion

Insert into a 2-node at bottom.
e Search for key, as usual.
« Replace 2-node with 3-node.

insert K

K is greater than J
(go right)

2-3 tree demo: insertion

Insert into a 2-node at bottom.
e Search for key, as usual.
« Replace 2-node with 3-node.

insert K

D (R
(a0 (H) k@@ (P (X

search ends here

2-3 tree demo: insertion

Insert into a 2-node at bottom.
e Search for key, as usual.
« Replace 2-node with 3-node.

insert K

D (R
(a0 (H) k@ (P (X

replace 2-node with
3-node containing K

2-3 tree demo: insertion

Insert into a 2-node at bottom.
e Search for key, as usual.
« Replace 2-node with 3-node.

insert K

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

Z is greater than M
(go right)

@ Z

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

Z is greater than R
(go right)

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

D (R,
(aQ) (W) (kL) (P) (SK) 2

search ends here

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

D (R,
(aQ) (W) (kL) (P) (SK) 2

replace 3-node with
temporary 4-node containing Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

split 4-node into two 2-nodes
(pass middle key to parent)

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.
« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.

insert Z

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.

Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

(aC) CHRY L (SX)

convert 3-node into 4-node

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.
Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.

Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.
Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.

Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.
Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

height of tree increases by 1

insert L G

2-3 tree demo: insertion

Insert into a 3-node at bottom.

Add new key to 3-node to create temporary 4-node.

Move middle key in 4-node into parent.

Repeat up the tree, as necessary.

If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L 0

2-3 tree: insertion

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.
Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent. 1Db C) —

o Repeat up the tree, as necessary.

o If you reach the root and it's a 4-node, split it into three 2-nodes.

Practice: draw the 2-3 tree construction for SEARCH

(a)

(b)

26

2-3 tree demo: construction

insert S

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert E

<)

convert 2-node into 3-node

2-3 tree demo: construction

insert E

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert A

tIER

convert 3-node into 4-node

2-3 tree demo: construction

insert A

2-3 tree demo: construction

insert A

split 4-node
(move E to parent)

2-3 tree demo: construction

insert A

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert R

convert 2-node into 3-node

2-3 tree demo: construction

insert R

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert C

convert 2-node into 3-node

2-3 tree demo: construction

insert C

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert H

convert 3-node into 4-node

2-3 tree demo: construction

insert H

2-3 tree demo: construction

insert H

split 4-node
(move R to parent)

2-3 tree demo: construction

insert H

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert X

CONBOESOR

convert 2-node into 3-node

2-3 tree demo: construction

insert X

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert M

O OLECY

convert 2-node into 3-node

2-3 tree demo: construction

insert M

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert P

(AC) CHM) P (SX;

convert 3-node into 4-node

2-3 tree demo: construction

insert P

2-3 tree demo: construction

insert P

(ER
(AC) CHMBY (SX)

split 4-node
(move L to parent)

2-3 tree demo: construction

insert P

2-3 tree demo: construction

insert P

split 4-node
(move M to parent)

2-3 tree demo: construction

insert P

2-3 tree demo: construction

2-3 tree

2-3 tree demo: construction

insert L

convert 2-node into 3-node

2-3 tree demo: construction

insert L

convert 2-node into 3-node

2-3 tree demo: construction

2-3 tree

2-3 tree: global properties

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node

—= o
oo ft (d O (b d e)
abc (a) (c)
parent is a 2-node

:
!
)
)

l

left d) _
(a)
c d

(b d)
(<)
right (a) . right (a b) (a b d)
(b) (d) cde () (e)

64

2-3 tree: performance

Splitting a 4-node is a local transformation: constant number of operations.

b cd
less between\ /between\ /between\ /between greater
than a aandb b and c candd dand e than e
a C e

(b) ()

less between\ /between\ /between\ /between greater
than a aandb b and c c and d dand e than e

65

Balanced search trees: quiz 1

What is the height of a 2-3 tree with N keys in the worst case?

A. ~logsN

B. ~logx N

C. ~2logmN
D. ~N

E. [Idon't know.

66

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
 Worst case: IgN. [all 2-nodes]

e Best case: logsN =.6311gN. [all 3-nodes]
e« Between 12 and 20 for a million nodes.
« Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

67

ST implementations: summary

guarantee average case
key

implementation : ¢
search interface
search insert delete hit insert delete

sequential search

(unordered list) i N N N N N equalsQ
(::2::25‘:::';) log N N N log N N N v compareTo()
BST N N N log N log N VN v compareTo()
2-3 tree log N log N log N log N log N log N v compareTo()

but hidden constant is large
(depends upon implementation)

68

2-3 tree: implementation?

Direct implementation is complicated, because:
« Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.
« Need to move back up the tree to split 4-nodes.
« Large number of cases for splitting.

“ Beautiful algorithms are not always the most useful.

— Donald Knuth

Bottom line. Could do it, but there's a better way.

69

3.3 BALANCED SEARCH TREES

» red-black BSTs
Algorithms \

left-leaning version optimized for teaching and coding;
developed by Bob Sedgewick in creating this course!

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
« No way to tell a 3-node from a 2-node.
« Cannot map from BST back to 2-3 tree.

Approach 2. Regular BST with red "glue” nodes.
« Wastes space, wasted link.
o Code probably messy.

Approach 3. Regular BST with red "glue” links.
« Widely used in practice.
« Arbitrary restriction: red links lean left.

71

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.

2. Use "internal” left-leaning links as "glue" for 3-nodes.

3-node @ A larger key is root

less between_ / greater
than a aandb than b greater
than b

less between
than a aandb

black links connect
2-nodes and 3-nodes

red links "glue"
nodes within a 3-node

2-3 tree corresponding red-black BST

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red—-black tree

horizontal red links m
([J) (R)
(AR(C] (H) (1) (P) (S)(X)

2-3 tree

73

Definition of left-leaning red-black tree

A BST such that:
« No node has two red links connected to it.

e Every path from root to null link has the same number of black links.
« Red links lean left. \

"perfect black balance"

74

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

AN

but runs faster because
of better balance

public Value get(Key key)

{
Node x = root;
while (x !'= null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

75

Red-black BST representation

Q. How to represent color of links in Java data structure?

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
{

Key key;

Value val;

Node Teft, right;

boolean color; // color of parent Tlink
}

private boolean isRed(Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

h.left.color
is RED N\

(Q
(A) (D)

(E)

Ve

h

(G)

h.right.color

.~ is BLACK

76

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left
(before)

less
than E

between greater
EandS than S

Invariants. Maintains symmetric order and perfect black balance.

77

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

TR private Node rotatelLeft(Node h)
{
X assert isRed(h.right);
Node x = h.right; >
h h.right = x.left; ",
greater x.left = h; ;
than S x.color = h.color;%
h.color = RED;
less between PRI 2
than E EandS }

Invariants. Maintains symmetric order and perfect black balance.

78

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(before)
h
X
greater
than S
less between
than E Eand S

Invariants. Maintains symmetric order and perfect black balance.

79

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

(after) private Node rotateRight(Node h)
{
X assert isRed(h.Tleft);
Node x = h.left; -
h h.left = x.right; ",
less X.right = h;
than E x.color = h.co1or;‘
h.color = RED; ‘
between greater return Xx;
EandS than S }

Invariants. Maintains symmetric order and perfect black balance.

80

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

less between between greater
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node h)
{

assert !isRed(h);
assert isRed(h.left);)
assert isRed(h.right);_. 6
h.color = RED; {’
h.left.color = BLACK;"
h.right.color = BLACKf_ \

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

82

Insertion into a LLRB tree

@ o root
™~ search ends

at this null link

root
o

‘D red link to
new node
e ™ containing a
converts 2-node
to 3-node

Warmup 1. Insert into a tree with exactly 1 node.

right root

yd
search ends
“~at this null link

e attached new node

<~ with red link

root
v

rotated left
e ™\ 10 make a

legal 3-node

83

Insertion into a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

0 search ends
at this

e
e null link

attached new

@ e node with

d link
e G re

colors flipped
@ «— to black

smaller

™ search ends
at this null link

()
(b)
attached new
e ™ node with

red link

rotated
@ « right
(@) (<)

colors flipped
@ «— to black

between

e search ends
““at this null link

attached new
~~ — node with
‘D red link

9 rotated left

rotated

« right
O

colors flipped
‘D «— to black

84

Insertion into a LLRB tree

General case.
. Do standard BST insert; color new link red. «—— [© maintain symmetric order
and perfect black balance

o Repeat until needed:
— (Only) right link red: rotate left.
— Two left red links in a row: rotate right. | iy color invariants
— Both children red: flip colors.

two lefts in a row
G so rotate right

N — i
af " ®

/
add new
node here /
right link red

so rotate left

l

inserting H

both children red
so flip colors

85

Insertion into a LLRB tree: passing red links up the tree

General case.
« Do standard BST insert; color new link red. «<—— t°aL”da‘r?;i‘f‘e”cf{)r{’a?ftg;ﬁ;:f:r
o Repeat until needed:
— (Only) right link red: rotate left.
— Two left red links in a row: rotate right. | iy color invariants
— Both children red: flip colors.

inserting P .
both children red
e so flip colors
(E) (S) /
W Q
e m \ @ m "~ both children G @
add new 0 ﬂireilosz(;rs @ m 0 9
node here p 0

two lefts in a row
right link red so rotate right \
so rotate left
N

both children red
so flip colors
86

Red-black BST construction practice: SEARCH

insert S

i

« Repeat until needed:

O

— (Only) right link red: rotate left.
— Two left reds in a row: rotate right.

— Both children red: flip colors.

e Do standard BST insert; color new link red.

87

Red-black BST construction demo

insert S

i

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert E

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert A

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two left reds in a row
(rotate S right)

insert A

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

both children red
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

both children red
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert R

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert C

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

right link red
(rotate A left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert H

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two left reds in a row
(rotate S right)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

both children red
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

right link red
(rotate E left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert X

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert X

right link red
(rotate S left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert M

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert M

right link red
(rotate H left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

insert P

two red children
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

right link red
(rotate E left)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two left reds in a row
(rotate R right)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two red children
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

two red children
(flip colors)

« Do standard BST insert; color new link red.
« Repeat until needed:

— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

e Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

e Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Red-black BST construction demo

red-black BST

e Do standard BST insert; color new link red.

« Repeat until needed:
— (Only) right link red: rotate left.

— Two left reds in a row: rotate right.

— Both children red: flip colors.

Insertion into a LLRB tree: Java implementation

Same code for all cases.
« Right child red, left child black: rotate left.

h
« Left child, left-left grandchild red: rotate right. @left h
h = rotate
R
‘ \right

rotate flip
F) colors

« Both children red: flip colors. .

private Node put(Node h, Key key, Value val)

{ . insert at bottom
if (h == null) return new Node(key, val, RED); «—] caller T el
int cmp = key.compareTo(h.key) ;
if (cmp < 0) h.left = putCh.left, key, val);

else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;

it (isRedCh.right) && !isRed(h.left)) h = rotateLeft(h); <«——— lean left

if (isRed(h.Teft) && isRed(h.left.left)) h = rotateRight(h); «——— balance 4-node
if (isRedCh.left) && isRedCh.right)) flipColors(h); <«——— split 4-node
return h; T

} only a few extra lines of code provides near-perfect balance

127

Insertion into a LLRB tree: visualization

Insertion into a LLRB tree: visualization

(M DO O 0

255 insertions in descending order

Insertion into a LLRB tree: visualization

N = 255

max = 10
avg = 7.3
opt=7.0

‘.t “““ M? 't g"y o

lll

l.l i l“.. :

255 random insertions

130

Balanced search trees: quiz 2

What is the height of a LLRB tree with N keys in the worst case?

m

o N =w »

~logs N
~logx N
~2loga N

~N

I don't know.

131

Balance in LLRB trees

Proposition. Height of tree is <21g N in the worst case.

Pf.
* Black height = height of corresponding 2-3 tree < IgN.
e Never two red links in-a-row.

l A‘A A‘
O A it aﬂ

Property. Height of tree is ~ 1.01g N in typical applications.

132

ST implementations: summary

guarantee average case
ol tati ordered key
'mplementation ops? interface
search
search insert delete hit insert delete

sequential search

]
(unordered list) N N N N N N equalsQ)
binary search I . v o T
(ordered array) og N N N og N N N
BST N N N log N log N VN v compareTo()
2-3 tree log N log N log N log N log N log N v compareTo()
red-black BST (log N) (log N) log N log N log N log N v compareTo()

hidden constant c is small
(at most 2 Ig N compares) 133

War story: why red-black?

Xerox PARC innovations. [1970s]

Alto.

GUL.

Ethernet. XEROX.
Smalltalk.

InterPress.

Laser printing.
Bitmapped display.
WYSIWYG text editor.

Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Leo J. Guibas

Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

ABSTRACT

Tu this paper we present a mniform framework for the implementation
and study of balanced tree algorvithms., We show how to imbed in this

Robert Sedgewick*

Program in Computer Science
and Brown University

Providence, R. L.

the way down towards a lcaf. As we will sce, this has a number of
significant advantages over the older methods. We shall examine a
number of variations on a common theme and exhibit full
implementations which are notable for their brevity. One
implementation is cxamined carefully, and some propertics about its

134

War story: red-black BSTs

Telephone company contracted with database provider to build real-time

database to store customer information.

Database implementation.
« Red-Black BST.

« Exceeding height limit of 80 triggered error-recovery process.

show allow for for up to 240 keys

did not rebalance
/ BST during delete

e Main cause = height bound exceeded!

« Telephone company sues database provider.
o Legal testimony:

Extended telephone service outage.

“If implemented properly, the height of a red—black BST
with N keys is at most 2 Ig N. © — expert witness

I

135

3.3 BALANCED SEARCH TREES

: » B-trees
Algorithms \
ROBERT SEDGEWICK | KEVIN WAYNE A type of ﬁalanCEd free (CO')invented by

http://algs4.cs.princeton.edu Rudolf Bayer while working at Boeing

File system model

Page. Contiguous block of data (e.g., a 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

slow fast

Property. Time required for a probe is much larger than time to access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

137

B-trees (Bayer-McCreight, 1972) @ﬂﬂflﬂﬂﬁ

B-tree. Generalize 2-3 trees by allowing up to M keys per node.
« Atleast | M /2] keys in all nodes (except root).

choose M as large as

e Every path from root to leaf has same number of links. possible so that M keys
fit in a page
(M =1,024 is typical)

//\\

ACDF IJKLO) CQRT) (vwxvz)

a B-tree (M = 6)

138

Search in a B-tree

« Start at root.
e Check if node contains key.
« Otherwise, find interval for search key and take corresponding link.

AN

could use binary search
(but all ops are considered free)

//\\

ACDF IJKLO) CQRT (vwxvz)

a B-tree (M = 6)

139

Insertion in a B-tree

e Search for new key.

e Insert at bottom.

» Split nodes with A7+ 1 keys on the way back up the B-tree
(moving middle key to parent).

//\\

ACDF IJKLO) CQRT) (vwxvz)

a B-tree (M = 6)

140

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys

requires between ~logy N and ~log a2 N probes.

Pf. All nodes (except possibly root) have between | M/2 | and M keys.

In practice. Number of probes is at most 4. «—— M=1024; N =62 billion
logmz N < 4

141

Balanced search trees: quiz 3

What of the following does the B in B-tree not mean?

A. Bayer

B. Balanced
C. Binary
D. Boeing

E. Idon't know.

“ the more you think about what the B in B-trees could mean,
the more you learn about B-trees and that is good.

— Rudolph Bayer

142

Balanced trees in the wild

Red-Black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.

e Linux kernel: completely fair scheduler, Tinux/rbtree.h.
« Emacs: conservative stack scanning.

B-tree cousins. B+ tree, B*tree, B# tree, ...

B-trees (and cousins) are widely used for file systems and databases.

e Windows: NTFS.
e Mac: HFS, HFS+.

o Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.
« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

H ORACLE
bt HFS DATABASE

Mac

143

