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3.3  BALANCED SEARCH TREES

‣ 2–3 search trees 

‣ red–black BSTs 

‣ B-trees
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Symbol table review

 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge.  Guarantee performance. 

 
This lecture.  2–3 trees, left-leaning red–black BSTs, B-trees.

implementation

guarantee average case
ordered 

ops?
key 

interface
search insert delete

search 
hit

insert delete

sequential search 
(unordered list) N N N N N N equals()

binary search 
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

goal log N log N log N log N log N log N ✔ compareTo()
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Algorithms

‣ 2–3 search trees 

‣ red–black BSTs 

‣ B-trees

3.3  BALANCED SEARCH TREES



Symmetric order.  Inorder traversal yields keys in ascending order.  
Perfect balance.  Every path from root to null link has same length.  

 
Allow 1 or 2 keys per node. 

・2-node:  one key, two children. 

・3-node:  two keys, three children. 

 

2–3 tree

4

between E and J

larger than J
smaller than E

S XA C PH

R

M

L

E J

3-node 2-node

null link



Search. 

・Compare search key against keys in node. 

・Find interval containing search key. 

・Follow associated link (recursively).

2–3 tree demo

5

search for H

S XA C PH

R

M

L

E J



Insert into a 2-node at bottom. 

・Search for key, as usual. 

・Replace 2-node with 3-node.

2–3 tree demo:  insertion

S XA C PH

R

M

L

E J

insert K

K

K is less than M 
(go left)



Insert into a 2-node at bottom. 

・Search for key, as usual. 

・Replace 2-node with 3-node.

2–3 tree demo:  insertion

S XA C PH

R

M

L

E J

K is greater than J 
(go right)

K

insert K



Insert into a 2-node at bottom. 

・Search for key, as usual. 

・Replace 2-node with 3-node.

2–3 tree demo:  insertion

S XA C PH

R

M

L

E J

search ends here

K

insert K



Insert into a 2-node at bottom. 

・Search for key, as usual. 

・Replace 2-node with 3-node.

S XA C PH

R

M

E J

replace 2-node with 
3-node containing K

2–3 tree demo:  insertion

LLK

insert K



Insert into a 2-node at bottom. 

・Search for key, as usual. 

・Replace 2-node with 3-node.

S XA C PH

R

M

E J

2–3 tree demo:  insertion

S XA C PH

R

M

E J

LLK

insert K



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

S XP

R

2–3 tree demo:  insertion

A C H K L

E J

M Z

Z is greater than M 
(go right)

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

S XP

R

2–3 tree demo:  insertion

A C H K L

E J

M

Z

Z is greater than R 
(go right)

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

S XP

R

2–3 tree demo:  insertion

A C H K L

E J

M

Z

search ends here

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

S X

2–3 tree demo:  insertion

A C H K L

E J

M

Z

replace 3-node with 
temporary 4-node containing Z

P

R

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

P

2–3 tree demo:  insertion

A C H K L

E J

S X Z

M

R

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

P

2–3 tree demo:  insertion

A C H K L

E J

split 4-node into two 2-nodes 
(pass middle key to parent)

S Z

M

R

X

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

P

2–3 tree demo:  insertion

A C H K L

E J

M

ZS

R X

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent.

P

2–3 tree demo:  insertion

A C H K L

E J

M

ZS

R X

insert Z



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

S XA C

E R

H P

convert 3-node into 4-node

L

insert L



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

S XA C

E R

H PL

insert L



S XA C

Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

split 4-node 
(move L to parent)

H P

E R

L

insert L



S XA C

Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

PH

E RL

insert L



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

S XA C PH

split 4-node 
(move L to parent)

E RL

insert L



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

insert L

S XA C PH

E R

L

height of tree increases by 1



Insert into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo:  insertion

S XA C PH

E R

Linsert L



Insertion into a 2-node at bottom. 

・Add new key to 2-node to create a 3-node. 

Insertion into a 3-node at bottom. 

・Add new key to 3-node to create temporary 4-node. 

・Move middle key in 4-node into parent. 

・Repeat up the tree, as necessary.  

・If you reach the root and it's a 4-node, split it into three 2-nodes. 

Practice: draw the 2-3 tree construction for SEARCH

2–3 tree:  insertion

26

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary) 

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e



2–3 tree demo:  construction

insert S

S



2–3 tree demo:  construction

2–3 tree

S



2–3 tree demo:  construction

insert E

convert 2-node into 3-node

SE



2–3 tree demo:  construction

insert E

E S



2–3 tree demo:  construction

2–3 tree

E S



2–3 tree demo:  construction

insert A

E S

convert 3-node into 4-node

A



E S

2–3 tree demo:  construction

insert A

A



SA E

2–3 tree demo:  construction

insert A

split 4-node 
(move E to parent)



2–3 tree demo:  construction

insert A

SA

E



2–3 tree demo:  construction

2–3 tree

SA

E



2–3 tree demo:  construction

insert R

convert 2-node into 3-node

A

E

SR



2–3 tree demo:  construction

insert R

A

E

SR



2–3 tree demo:  construction

2–3 tree

A

E

SR



2–3 tree demo:  construction

insert C

convert 2-node into 3-node

A

E

SRC



2–3 tree demo:  construction

insert C

E

SRA C



2–3 tree demo:  construction

2–3 tree

E

SRA C



2–3 tree demo:  construction

insert H

SR

E

A C

convert 3-node into 4-node

H



2–3 tree demo:  construction

insert H

E

A C SRH



2–3 tree demo:  construction

insert H

A C

split 4-node 
(move R to parent)

SH

E

R



2–3 tree demo:  construction

insert H

A C SH

E R



2–3 tree demo:  construction

2–3 tree

A C SH

E R



A C H

E R

2–3 tree demo:  construction

insert X

convert 2-node into 3-node

S X



A C H

E R

2–3 tree demo:  construction

insert X

S X



A C H

E R

2–3 tree demo:  construction

2–3 tree

S X



S XA C

E R

2–3 tree demo:  construction

insert M

convert 2-node into 3-node

H M



S XA C

E R

2–3 tree demo:  construction

insert M

H M



S XA C

E R

2–3 tree demo:  construction

2–3 tree

H M



S XA C

E R

2–3 tree demo:  construction

insert P

H M

convert 3-node into 4-node

P



S XA C

E R

2–3 tree demo:  construction

H PM

insert P



S XA C

2–3 tree demo:  construction

split 4-node 
(move L to parent)

H P

E R

M

insert P



S XA C

2–3 tree demo:  construction

H

E RM

P

insert P



S XA C

2–3 tree demo:  construction

insert P

H

split 4-node 
(move M to parent)

E RM

P



S XA C

2–3 tree demo:  construction

PH

E R

M

insert P



S XA C

2–3 tree demo:  construction

2–3 tree

H

E R

M

P



S XA C

2–3 tree demo:  construction

insert L

H

E R

M

P

convert 2-node into 3-node

L



S XA C

2–3 tree demo:  construction

insert L

E R

M

P

convert 2-node into 3-node

H L



S XA C

2–3 tree demo:  construction

2-3 tree

E R

M

PH L



Invariants.   Maintains symmetric order and perfect balance. 

Pf.   Each transformation maintains symmetric order and perfect balance.
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2–3 tree:  global properties

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary) 

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c
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b d e
b

right

middle

left

right

left
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b d
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ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary) 

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e
b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary) 

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

Homework: 

verify this



Splitting a 4-node is a local transformation: constant number of operations.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a  4-node is a local transformation that preserves balance 
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2–3 tree:  performance



What is the height of a 2–3 tree with N keys in the worst case?  

A.   ~ log3 N 

B.   ~ log2 N 

C.   ~ 2 log2 N 

D.    ~ N 

E.  I don't know.

66

Balanced search trees:  quiz 1



Perfect balance.  Every path from root to null link has same length. 

 
 
 
 
 
 
 
Tree height. 

・Worst case: lg N.  [all 2-nodes] 

・Best case: log3 N  ≈ .631 lg N. [all 3-nodes] 

・Between 12 and 20 for a million nodes. 

・Between 18 and 30 for a billion nodes. 

 
 
Bottom line.  Guaranteed logarithmic performance for search and insert.

67

2–3 tree:  performance

Typical 2-3 tree built from random keys



ST implementations:  summary

68

implementation

guarantee average case
ordered 

ops?
key 

interface
search insert delete search 

hit
insert delete

sequential search 
(unordered list) N N N N N N equals()

binary search 
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

2–3 tree log N log N log N log N log N log N ✔ compareTo()

but hidden constant is large 
(depends upon implementation)



“  Beautiful algorithms are not always the most useful. ” 

           —  Donald Knuth

Direct implementation is complicated, because: 

・Maintaining multiple node types is cumbersome. 

・Need multiple compares to move down tree. 

・Need to move back up the tree to split 4-nodes. 

・Large number of cases for splitting. 

 
 
 
 
 
 
 
 
 
 
Bottom line.  Could do it, but there's a better way.

69

2–3 tree:  implementation?
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3.3  BALANCED SEARCH TREES

left-leaning version optimized for teaching and coding; 
developed by Bob Sedgewick in creating this course!



Challenge.  How to represent a 3 node? 

 
 
Approach 1.  Regular BST. 

・No way to tell a 3-node from a 2-node. 

・Cannot map from BST back to 2–3 tree.  

 
 
Approach 2.  Regular BST with red "glue" nodes. 

・Wastes space, wasted link. 

・Code probably messy. 

 
 
Approach 3.  Regular BST with red "glue" links. 

・Widely used in practice. 

・Arbitrary restriction:  red links lean left.
71

How to implement 2–3 trees with binary trees?

E R

E

R

E

R

E R



1.  Represent 2–3 tree as a BST. 

2.  Use "internal" left-leaning links as "glue" for 3–nodes. 
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Left-leaning red–black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect  
2-nodes and 3-nodes

red links "glue"  
nodes within a 3-node

2–3 tree corresponding red–black BST



Key property.  1–1 correspondence between 2–3 and LLRB.
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Left-leaning red–black BSTs:  1–1 correspondence with 2–3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C



A BST such that: 

・No node has two red links connected to it. 

・Every path from root to null link has the same number of black links. 

・Red links lean left.
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Definition of left-leaning red-black tree

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C



Search implementation for red–black BSTs

Observation.  Search is the same as for elementary BST (ignore color). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark.  Most other ops (e.g., floor, iteration, selection) are also identical.
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public Value get(Key key) 
{ 
   Node x = root; 
   while (x != null) 
   { 
      int cmp = key.compareTo(x.key); 
      if      (cmp  < 0) x = x.left; 
      else if (cmp  > 0) x = x.right; 
      else if (cmp == 0) return x.val; 
   } 
   return null; 
}

but runs faster because 
of better balance

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C



Red–black BST representation

Q. How to represent color of links in Java data structure? 

Each node is pointed to by precisely one link (from its parent)  ⇒ 
can encode color of links in nodes. 
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 private static final boolean RED   = true; 
 private static final boolean BLACK = false; 

 private class Node 
 { 
    Key key; 
    Value val; 
    Node left, right; 
    boolean color;   // color of parent link 
 } 

 private boolean isRed(Node x) 
 { 
    if (x == null) return false; 
    return x.color == RED; 
 } 

null links are black

private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val)
   {
      this.key   = key;
      this.val   = val;
      this.N     = 1;
      this.color = RED;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK



Elementary red–black BST operations

Left rotation.   Orient a (temporarily) right-leaning red link to lean left. 

Invariants.  Maintains symmetric order and perfect black balance.
77

greater 
than S

x

h

S

between 
E and S

less 
than E

E

rotate E left
(before)



Elementary red–black BST operations

Left rotation.   Orient a (temporarily) right-leaning red link to lean left. 

Invariants.  Maintains symmetric order and perfect black balance.
78

greater 
than S

less 
than E

x

h E

between 
E and S

S

rotate E left
(after)

 private Node rotateLeft(Node h) 
 { 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

Skipped 

in class



Elementary red–black BST operations

Right rotation.   Orient a left-leaning red link to (temporarily) lean right. 

Invariants.  Maintains symmetric order and perfect black balance.
79

rotate S right
(before)

greater 
than S

less 
than E

h

x E

between 
E and S

S



Elementary red–black BST operations

Right rotation.   Orient a left-leaning red link to (temporarily) lean right. 

Invariants.  Maintains symmetric order and perfect black balance.
80

 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

rotate S right
(after)

greater 
than S

h

x

S

between 
E and S

less 
than E

E

Skipped 

in class



Color flip.  Recolor to split a (temporary) 4-node. 

Invariants.  Maintains symmetric order and perfect black balance.

Elementary red–black BST operations

81

greater 
than S

between 
E and S

between 
A and E

less 
than A

h

SA

flip colors
(before)

E



Color flip.  Recolor to split a (temporary) 4-node. 

Invariants.  Maintains symmetric order and perfect black balance.

Elementary red–black BST operations

82

greater 
than S

between 
E and S

between 
A and E

less 
than A

h

SA

 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    assert isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 } 

flip colors
(after)

E

Skipped 

in class



Warmup 1.  Insert into a tree with exactly 1 node.

Insertion into a LLRB tree

83

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node 

search ends
at this null link

attached new node
with red link

rotated left
to make a 

legal 3-node 

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node 

search ends
at this null link

attached new node
with red link

rotated left
to make a 

legal 3-node 

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)



Warmup 2.  Insert into a tree with exactly 2 nodes.

Insertion into a LLRB tree

84

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left 

rotated
right 

rotated
right 

colors flipped
to black 

colors flipped
to black 

search ends
at this

null link

attached new
node with
red link

colors flipped
to black 

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left 

rotated
right 

rotated
right 

colors flipped
to black 

colors flipped
to black 

search ends
at this

null link

attached new
node with
red link

colors flipped
to black 

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c
b

attached new
node with
red link

rotated left 

rotated
right 

rotated
right 

colors flipped
to black 

colors flipped
to black 

search ends
at this

null link

attached new
node with
red link

colors flipped
to black 

a

c
b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)



General case. 

・Do standard BST insert; color new link red. 

・Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left red links in a row: rotate right. 

– Both children red: flip colors.

Insertion into a LLRB tree

85

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

H

E

R
S

A
C

S

S

R

E
H

add new
node here

E

R
S

A
C

right link red
so rotate left

two lefts in a row
so rotate right

E

H
R

A
C

both children red
so flip colors

S

E

H
R

A
C

A
C

inserting H

Insert into a 3-node
at the bottom

to fix color invariants

to maintain symmetric order 
and perfect black balance



General case. 

・Do standard BST insert; color new link red. 

・Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left red links in a row: rotate right. 

– Both children red: flip colors.

Insertion into a LLRB tree:  passing red links up the tree

86

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

P

S

R

E

add new
node here

right link red
so rotate left

both children
red so

flip colors

A
C

H
M

inserting P

S

R

E

A
C

H
M

P

S

R

E

A
C

H
M

P
S

R

E

A
C H

M

Passing a red link up the tree

two lefts in a row
so rotate right

P S

RE

A
C H

M

both children red
so flip colors

P S

RE

A
C H

M

to maintain symmetric order 
and perfect black balance

to fix color invariants



Red–black BST construction practice: SEARCH

87

S

insert S

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

insert S

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



E

Red-black BST construction demo

S

insert E

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



A

Red-black BST construction demo

S

E

insert A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

two left reds in a row 
(rotate S right)insert A

E

A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

both children red 
(flip colors)

E

A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

E

both children red 
(flip colors)

A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

E

red-black BST

A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

E

red-black BST

A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



R

Red-black BST construction demo

S

E

A

insert R

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

A

red-black BST

E

S

R

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

A

E

S

R

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



C

Red-black BST construction demo

A

E

S

R

insert C

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

E

S

RC

right link red 
(rotate A left)

A

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

E

S

R

C

A

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

red-black BST

E

C

A

S

R

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

R

E

C

A

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



H

Red-black BST construction demo

S

R

E

C

A

insert H

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

E

C

A

H

R

two left reds in a row 
(rotate S right)

S

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

E

C

A H

R

S

both children red 
(flip colors)

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

H S

E

RC

A

right link red 
(rotate E left)

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

R

SE

C

A

red-black BST

H

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

S

red-black BST

C

A

H

R

E

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

H

R

E

red-black BST

S

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



X

Red-black BST construction demo

C

A

H

R

E

insert X

S

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

H

R

E

X

S

right link red 
(rotate S left)

insert X

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

H

R

E X

S

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

H

R

E X

S

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

R

E X

S

red-black BST

C

A

H

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



M

Red-black BST construction demo

R

E X

S

insert M

C

A

H

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

R

E X

S

M

H

right link red 
(rotate H left)

insert M

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

R

E X

SM

H

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

C

A

R

E X

SM

two red children 
(flip colors)

insert P

H P

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



H

Red-black BST construction demo

C

A

E X

S

P

M

right link red 
(rotate E left)

R

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



H

Red-black BST construction demo

C

A

E

X

S

M

two left reds in a row 
(rotate R right)

R

P

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



H

Red-black BST construction demo

C

A

E

X

S

M

two red children 
(flip colors)

R

P

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



H

Red-black BST construction demo

C

A

E

X

S

M

two red children 
(flip colors)

R

P

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



H

Red-black BST construction demo

C

A

E

X

S

M

R

red-black BST

P

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

HC

A

E

X

S

P

M

R

red-black BST

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Red-black BST construction demo

red-black BST

X

S

P

M

R

HC

A

E

・ Do standard BST insert; color new link red. 

・ Repeat until needed: 

– (Only) right link red: rotate left. 

– Two left reds in a row: rotate right. 

– Both children red: flip colors.



Insertion into a LLRB tree:  Java implementation

Same code for all cases. 

・Right child red, left child black: rotate left. 

・Left child, left-left grandchild red: rotate right. 

・Both children red: flip colors.

127

 private Node put(Node h, Key key, Value val) 
 { 
    if (h == null) return new Node(key, val, RED); 
    int cmp = key.compareTo(h.key); 
    if      (cmp  < 0) h.left  = put(h.left,  key, val); 
    else if (cmp  > 0) h.right = put(h.right, key, val); 
    else if (cmp == 0) h.val = val; 

    if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h); 
    if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h); 
    if (isRed(h.left)  && isRed(h.right))     flipColors(h); 
    
    return h; 
 }

insert at bottom 
(and color it red)

split 4-node
balance 4-node
lean left

only a few extra lines of code provides near-perfect balance

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black tree

h

h

h

Skipped 

in class



Insertion into a LLRB tree:  visualization

128

255 insertions in ascending order



129

Insertion into a LLRB tree:  visualization

255 insertions in descending order



130

Insertion into a LLRB tree:  visualization

255 random insertions



What is the height of a LLRB tree with N keys in the worst case?  

A.   ~ log3 N 

B.   ~ log2 N 

C.   ~ 2 log2 N 

D.    ~ N 

E.  I don't know.

131

Balanced search trees:  quiz 2

Ran out of time 

about here



Proposition.  Height of tree is ≤ 2 lg N in the worst case.  

Pf. 

・Black height = height of corresponding 2–3 tree  ≤  lg N. 

・Never two red links in-a-row. 
 
 
 
 
 
 

 
 
 
 
Property.  Height of tree is ~ 1.0 lg N in typical applications.

132

Balance in LLRB trees



ST implementations:  summary

133

implementation

guarantee average case
ordered 

ops?
key 

interface
search insert delete

search 
hit

insert delete

sequential search 
(unordered list) N N N N N N equals()

binary search 
(ordered array) log N N N log N N N ✔ compareTo()

BST N N N log N log N √ N ✔ compareTo()

2–3 tree log N log N log N log N log N log N ✔ compareTo()

red–black BST log N log N log N log N log N log N ✔ compareTo()

hidden constant c is small 
(at most 2 lg N compares)



Xerox PARC innovations.  [1970s] 

・Alto. 

・GUI. 

・Ethernet. 

・Smalltalk. 

・InterPress. 

・Laser printing. 

・Bitmapped display. 

・WYSIWYG text editor. 

・...

War story:  why red–black?
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A DIClIROlV1ATIC FUAl\lE\V()HK Fon BALANCED TREES

Leo J. Guibas
.Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Afellon University

and

Robert Sedgewick*
Program in Computer Science
Brown University
Providence, R. I.

ABSTUACT

I() this paper we present a uniform framework for the implementation
and study of halanced tree algorithms. \Ve show how to imhcd in this
framework the best known halanced tree tecilIliques and thell usc the
framework to deVl'lop new which perform the update and
rebalancing in one pass, Oil the way down towards a leaf. \Ve
conclude with a study of performance issues and concurrent updating.

O. Introduction

I1alanced trees arc arnong the oldest and tnost widely used data
stnlctures for searching. These trees allow a wide variety of
operations, such as search, insertion, deletion, tnerging, and splitting
to be performed in tinK GOgN), where N denotes the size of the tree
[AHU], [KtJ]. (Throughout the paper 19 will denote log to the base 2.)
A number of different types of balanced trees have been proposed,
and while the related algorithms are oftcn conceptually sin1ple, they
have proven cumbersome to irnp1cn1ent in practice. Also, the variety
of such trees and the lack of good analytic results describing their
performance has made it difficult to decide which is best in a given
situation.

In this paper we present a uniform fratnework for the
imp1crnentation and study of balanced tree algorithrns. 'Inc
fratTIework deals exclusively with binary trecs which contain two
kinds of nodes: internal and external. Each internal node contains a
key (chosen frorn a linear order) and has two links to other nodes
(internal or external). External nodes contain no keys and haye null
links. If such a tree is traversed in sYlnn1etlic order [Knl then the
internal nodes will be visited in increasing order of their keys. A
second defining feature of the frarncwork is U1at it allows one bit per
node, called the color of the node, to store balance infonnation. We
will use red and black as the two colors. In section 1 we further
elaborate upon this dichrornatic framework and show how to imbed
in it the best known balanced tree algorithms. In doing so, we will
discover suprising new and efficient implementations of these
techniques.

In section 2 we use the frarnework to develop new balanced tree
algorithms which perform the update and rebalancing in one pass, on

This work was done in part while this author was a Visiting
Scientist at the Xerox Palo Alto Research Center and in part under
support from thc NatiGfna1 Sciencc Foundation, grant no. MCS75-
23738.

CH1397-9/78/0000-QOOS$JO.75 © 1973 IEEE
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the way down towards a leaf. As we will see, this has a number of
significant advantages ovcr the older methods. We shall cxamine a
numhcr of variations on a common theme and exhibit full
implementations which are notable for their brcvity. One
imp1cn1entation is exatnined carefully, and some properties about its
behavior are proved.

]n both sections 1 and 2 particular attention is paid to practical
implementation issues, and cOlnplcte impletnentations are given for
all of the itnportant algorithms. '1l1is is significant because one
measure under which balanced tree algorithtns can differ greatly is
the amount of code required to actually implement them.

Section 3 deals with the analysis of the algorithlns. New results are
givcn for the worst case perfonnance, and a technique for studying
the average case is described. While no balanced tree algorithm has
yet satisfactorily subtnitted to an average case analysis, empirical
results arc given which show U1at the valious algorithms differ only
slightly in perfonnance. One irllplication of this is Ulat the top-down
algorithms of section 2 can be recommended for most applications
because of their simplicity.

Finally, in section 4, we discuss some other properties of the trees. In
particular, a one-pass top down deletion algorithm is presented. In
addition, we consider how to decouple the balancing from the
updating operations and we explore parallel updating.

1. The lJnifoml Franlcwork

In this section we present a unifonn frarnework for describing
balanced trees. We show how to ernbed in this framework the nlost
widely used balanced tree schemes, narnely B-trecs [UaMe], and AVL
trees [AVL]. In fact this ernbedding will give us interesting and novel
irnplclnentations of these two schemes.

We consider rebalancing transfonnations which maintain the
symrnetric order of the keys and which arc local to a s1na11 portion of
the tree f()r obvious efficiency reasons. These transformations will
changc the structure of thc tree in the salnc way as the single and
double rotations used by AVL trees [Kn]. '111c differencc between the
various algorithms we discuss arises in the decision of when to rotate,
and in the tnanipulation of the node colors.

For our first cxample, let us consider the itnp1cmentation of
trees, the simplest type of B-tree. Recall that a 2-3 tree consists of 2-
nodes, which have one key and t\\'o sons, 3-nodes, which have two

Xerox Alto



War story:  red–black BSTs
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Telephone company contracted with database provider to build real-time 

database to store customer information. 

 
Database implementation. 

・Red–Black BST. 

・Exceeding height limit of 80 triggered error-recovery process. 

 
 
Extended telephone service outage. 

・Main cause = height bound exceeded! 

・Telephone company sues database provider. 

・Legal testimony: 

show allow for for up to 240 keys

“ If implemented properly, the height of a red–black BST  
   with N keys is at most 2 lg N. ”    —  expert witness

did not rebalance 
BST during delete



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ 2–3 search trees 

‣ red–black BSTs 

‣ B-trees

3.3  BALANCED SEARCH TREES

A type of Balanced tree (co-)invented by  
Rudolf Bayer while working at Boeing
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File system model

Page.  Contiguous block of data (e.g., a 4,096-byte chunk). 

Probe.  First access to a page (e.g., from disk to memory). 

 
 
 
 
 
 
 
 
Property.  Time required for a probe is much larger than time to access  
data within a page. 

 
Cost model.  Number of probes. 

 
Goal.  Access data using minimum number of probes.

slow fast



B-tree.  Generalize 2–3 trees by allowing up to M keys per node. 

・At least ⎣ M / 2 ⎦ keys in all nodes (except root). 

・Every path from root to leaf has same number of links.
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B-trees (Bayer-McCreight, 1972)

choose M as large as 
possible so that M keys 

fit in a page 
(M = 1,024 is typical)

G P U − − −

a B-tree (M = 6)

A C D F − − I J K L O − Q R T − − − V W X Y Z −



・Start at root. 

・Check if node contains key. 

・Otherwise, find interval for search key and take corresponding link.
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Search in a B-tree

could use binary search 
(but all ops are considered free)

G P U − − −

a B-tree (M = 6)

A C D F − − I J K L O − Q R T − − − V W X Y Z −



・Search for new key. 

・Insert at bottom. 

・Split nodes with M + 1 keys on the way back up the B-tree  
(moving middle key to parent).
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Insertion in a B-tree

G P U − − −

a B-tree (M = 6)

A C D F − − I J K L O − Q R T − − − V W X Y Z −



Proposition.  A search or an insertion in a B-tree of order M with N keys 

requires between ~ log M  N and ~ log M/2  N probes. 

 
Pf.  All nodes (except possibly root) have between ⎣ M / 2 ⎦ and M keys. 

 
 
In practice.  Number of probes is at most 4.
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Balance in B-tree

M = 1024; N = 62 billion 
log M/2 N  ≤  4



What of the following does the B in B-tree not mean? 

A.   Bayer 

B.   Balanced 

C.   Binary 

D.   Boeing 

E.  I don't know.
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Balanced search trees:  quiz 3

 “  the more you think about what the B in B-trees could mean,  
     the more you learn about B-trees and that is good.  ” 
               –  Rudolph Bayer
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Balanced trees in the wild

Red–Black trees are widely used as system symbol tables. 

・Java:  java.util.TreeMap, java.util.TreeSet. 

・C++ STL:  map, multimap, multiset. 

・Linux kernel:  completely fair scheduler, linux/rbtree.h. 

・Emacs:  conservative stack scanning. 

 
B-tree cousins.  B+ tree, B*tree, B# tree, … 

 
B-trees (and cousins) are widely used for file systems and databases. 

・Windows:  NTFS. 

・Mac:  HFS, HFS+.  

・Linux:  ReiserFS, XFS, Ext3FS, JFS, BTRFS. 

・Databases:  ORACLE, DB2, INGRES, SQL, PostgreSQL.


